|
计算机科学技术学报 ›› 2019,Vol. 34 ›› Issue (4): 762-774.doi: 10.1007/s11390-019-1941-9
所属专题: Data Management and Data Mining
Hong Fang1, Bo Zhao2,3, Xiao-Wang Zhang2,3,*, Member, CCF, Xuan-Xing Yang2,3
Hong Fang1, Bo Zhao2,3, Xiao-Wang Zhang2,3,*, Member, CCF, Xuan-Xing Yang2,3
RDF流数据是处理时空相关信息的有效数据模型。本文中,我们提出一个处理大规模RDF流数据的统一框架(LRSP)。首先,我们将现有的持续查询进行了统一的形式化表示。其次,我们通过将流数据处理,查询解析和查询执行三个模块分离,提出一种基于白盒设计的,针对RDF流数据的持续查询框架。最后我们设计实现了LRSP,并基于一些基准数据和真实世界数据,通过实验比较LRSP与其他现有引擎的性能。由于LRSP的体系结构特点,我们可以直接使用其他的高效RDF查询引擎(包括集中式引擎和分布式引擎)来处理RDF流数据上的持续查询。实验结果表明:LRSP具有较高的性能,尤其表现在处理大规模真实世界数据时。
[1] Barbieri D F, Braga D, Ceri S, Valle E D, Grossniklaus M. Querying RDF streams with C-SPARQL. ACM SIGMOD Record, 2010, 39(1):20-26. [2] Le-Phuoc D, Dao-Tran M, Parreira J X, Hauswirth M. A native and adaptive approach for unified processing of linked streams and linked data. In Proc. the 10th Int. Semantic Web Conference, October 2011, pp.370-388. [3] Anicic D, Fodor P, Rudolph S, Stojanovic N. EP-SPARQL:A unified language for event processing and stream reasoning. In Proc. the 20th Int. Conference on World Wide Web, March 2011, pp.635-644. [4] Zou L, Özsu M T, Chen L, Shen X, Huang R, Zhao D. gStore:A graph-based SPARQL query engine. The VLDB Journal, 2014, 23(4):565-590. [5] Neumann T, Weikum G. The RDF-3X engine for scalable management of RDF data. The VLDB Journal, 2010, 19(1):91-113. [6] Peng P, Zou L, Özsu M T, Chen L, Zhao D. Processing SPARQL queries over distributed RDF graphs. The VLDB Journal, 2016, 25(2):243-268. [7] Gurajada S, Seufert S, Miliaraki I, Theobald M. TriAD:A distributed shared-nothing RDF engine based on asynchronous message passing. In Proc. the 2014 ACM SIGMOD Int. Conference on Management of Data, June 2014, pp.289-300. [8] Li Q, Zhang X, Feng Z. PRSP:A plugin-based framework for RDF stream processing. In Proc. the 26th Int. Conference on World Wide Web Companion, April 2017, pp.815-816. [9] Alessandro M, Gianpaolo C. Processing flows of information:From data stream to complex event processing. In Proc. the 5th ACM Int. Conference on Distributed EventBased Systems, July 2011, pp.359-360. [10] Kolchin M, Wetz P, Kiesling E, Tjoa A M. YABench:A comprehensive framework for RDF stream processor correctness and performance assessment. In Proc. the 16th International Conference on Web Engineering, June 2016, pp.280-298. [11] Arasu A, Babu S, Widom J. The CQL continuous query language:Semantic foundations and query execution. The VLDB Journal, 2006, 15(2):121-142. [12] Carroll J J, Dickinson I, Dollin C, Reynolds D, Seaborne A, Wilkinson K. Jena:Implementing the semantic web recommendations. In Proc. the 13th Int. Conference on World Wide Web-Alternate Track Papers & Posters, May 2004, pp.74-83. [13] Ren X, Curé O. Strider:A hybrid adaptive distributed RDF stream processing engine. In Proc. the 16th Int. Semantic Web Conference, October 2017, pp.559-576. [14] Dell'Aglio D, Valle E D, Calbimonte J P, Corcho Ó. RSP-QL semantics:A unifying query model to explain heterogeneity of RDF stream processing systems. Int. Journal on Semantic Web and Information Systems, 2014, 10(4):17-44. [15] Dell'Aglio D, Calbimonte J P, Valle E D, Corcho Ó. To-wards a unified language for RDF stream query processing. In Proc. the 12th European Semantic Web Conference, May 2015, pp.353-363. [16] Brandt S, Kalayci E G, Ryzhikov V, Xiao G, Zakharyaschev M. Querying log data with temporal logic. Journal of Artificial Intelligence Research, 2018, 62:829-877. [17] Li L, Kim J, Xu J, Zhou X. Time-dependent route scheduling on road networks. ACM SIGSPATIAL Special, 2018, 10(1):10-14. [18] Qian Z, Xu J, Zheng K, Zhao P, Zhou X. Semantic-aware top-k spatial keyword queries. World Wide Web:Internet and Web Information Systems, 2018, 21(3):573-594. [19] Lanti D, Xiao G, Calvanese D. VIG:Data scaling for OBDA benchmarks. Semantic Web, 2019, 10(2):413-433. [20] Zhao B. Research on adaptive RDF stream processing architecture[Master Thesis]. College of Intelligence and Computing, Tianjin University, 2018. (in Chinese) [21] Li J, Liu C, Yu J X, Chen Y, Sellis T, Culpepper J S. Personalized influential topic search via social network summarization. IEEE Transactions on Konwledge and Data Engineering, 2016, 28(7):1820-1834. [22] Li J, Sellis T, Culpepper J S, He Z, Liu C, Wang J. Geosocial influence spanning maximization. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8):1653-1666. [23] Li J, Wang X, Deng K, Yang X, Sellis T, Yu J X. Most influential community search over large social networks. In Proc. the 33rd IEEE Int. Conference on Data Engineering, April 2017, pp.871-882. [24] Li J, Liu C, Islam M S. Keyword-based correlated network computation over large social media. In Proc. the 30th IEEE Int. Conference on Data Engineering, March 2014, pp.268-279. [25] Li J, Cai T, Mian A, Li R, Sellis T, Yu J X. Holistic influence maximization for targeted advertisements in spatial social networks. In Proc. the 34th IEEE Int. Conference on Data Engineering, April 2018, pp.1340-1343. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |