|
计算机科学技术学报 ›› 2019,Vol. 34 ›› Issue (4): 818-838.doi: 10.1007/s11390-019-1944-6
所属专题: Data Management and Data Mining
• Data Management and Data Mining • 上一篇 下一篇
Hong-Fei Xu1, Student Member, CCF, Yu Gu1, Senior Member, CCF Jian-Zhong Qi2, Member, ACM, Jia-Yuan He2, Ge Yu1,*, Fellow, CCF, Member, ACM, IEEE
Hong-Fei Xu1, Student Member, CCF, Yu Gu1, Senior Member, CCF Jian-Zhong Qi2, Member, ACM, Jia-Yuan He2, Ge Yu1,*, Fellow, CCF, Member, ACM, IEEE
随着基于位置的社交网络中签到数据的快速增长,旅游路线推荐问题受到越来越多的关注。现有的研究大多集中于如何返回具有高流行度的出行路线。本文通过考虑空间多样化因素,进一步提高路线推荐结果的可用性。本文提出一种新的查询问题,称为"空间多样化的top-k路线"查询。该查询返回k条高流行度的路线。每条路线从给定起始点出发,满足时间约束代价,并且包含指定类别的POI点。此外,返回的结果中任意两条路线之间的距离大于给定的距离约束。我们证明了该查询问题为NP-hard。针对该问题,本文提出了两个准确算法:第一个算法首先找到满足查询约束的所有候选路线,之后找到满足距离约束且具有最高流行度的k条路线;第二个算法在寻找候选路线的同时逐步构建最优路线组合。此外,为了获得更高的查询效率,本文提出了一个具有近似率保证的近似算法。我们使用真实数据集验证了所提出算法的效率和有效性。实验结果表明,本文提出的算法能够找到包含不同空间位置的POI的高流行路线。相较于基本算法,近似算法最多可节省90%的运行时间。
[1] Su H, Zheng K, Huang J M, Liu T Y, Wang H Z, Zhou X F. A crowd-based route recommendation system-CrowdPlanner. In Proc. the 30th International Conference on Data Engineering, March 2014, pp.1178-1181. [2] Lu H C, Chen C Y, Tseng V S. Personalized trip recommendation with multiple constraints by mining user check-in behaviors. In Proc. the 20th International Conference on Advances in Geographic Information Systems, November 2012, pp.209-218. [3] Zhang C Y, Liang H W, Wang K, Sun K L. Personalized trip recommendation with PoI availability and uncertain traveling time. In Proc. the 24th ACM International Conference on Information and Knowledge Management, October 2015, pp.911-920. [4] Hsieh H P, Li C T. Mining and planning time-aware routes from check-in data. In Proc. the 23rd International Conference on Information and Knowledge Management, November 2014, pp.481-490. [5] Shang S, Ding R G, Yuan B, Xie K X, Zheng K, Kalnis P. User oriented trajectory search for trip recommendation. In Proc. the 15th International Conference on Extending Database Technology, March 2012, pp.156-167. [6] Dai J, Liu C F, Xu J J, Ding Z M. On personalized and sequenced route planning. World Wide Web:Internet and Web Information Systems, 2016, 19(4):679-705. [7] Tang J Y, Sanderson M. Spatial diversity, do users appreciate it? In Proc. the 6th Workshop on Geographic Information Retrieval, February 2010, Article No. 22. [8] Chen Z B, Shen H T, Zhou X F, Zheng Y, Xie X. Searching trajectories by locations:An efficiency study. In Proc. the 29th ACM SIGMOD International Conference on Management of Data, June 2010, pp.255-266. [9] Shang S, Chen L S, Jensen C S, Wen J R, Kalnis P. Searching trajectories by regions of interest. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(7):1549-1562. [10] Shang S, Ding R, Zheng K, Jensen C S, Kalnis P, Zhou X F. Personalized trajectory matching in spatial networks. The International Journal on Very Large Data Bases, 2014, 23(3):449-468. [11] Zheng K, Zheng B L, Xu J J, Liu G F, An L, Li Z X. Popularity-aware spatial keyword search on activity trajectories. World Wide Web:Internet and Web Information Systems, 2017, 20(4):749-773. [12] Zheng K, Yang Y, Shang S, Yuan N J. Towards efficient search for activity trajectories. In Proc. the 29th International Conference on Data Engineering, April 2013, pp.230-241. [13] Shang S, Chen L S, Zheng K, Jensen C S, Wei Z, Kalnis P. Parallel trajectory-to-location join. IEEE Transactions on Knowledge and Data Engineering. doi:10.1109/TKDE.2018.2854705. [14] Wei L Y, Zheng Y, Peng W C. Constructing popular routes from uncertain trajectories. In Proc. the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2012, pp.195-203. [15] Cao X, Chen L S, Cong G, Xiao X K. Keyword-aware optimal route search. Proceedings of the VLDB Endowment, 2012, 5(11):1136-1147. [16] Li Y J, Yang W D, Dan W, Xie Z P. Keyword-aware dominant route search for various user preferences. In Proc. the 20th International Conference on Database Systems for Advanced Applications, April 2015, pp.207-222. [17] Shang S, Chen L S, Wei Z W, Jensen C S, Wen J R, Kalnis P. Collective travel planning in spatial networks. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(5):1132-1146. [18] Wen Y T, Yeo J, Peng W C, Hwang S W. Efficient keywordaware representative travel route recommendation. IEEE Transactions on Knowledge and Data Engineering, 2018, 29(8):1639-1652. [19] Liu H, Jin C Q, Yang B, Zhou A Y. Finding top-k optimal sequenced routes. In Proc. the 34th International Conference on Data Engineering, April 2018, pp.569-580. [20] Shang S, Liu J, Zheng K, Lu H, Pedersen T B, Wen J R. Planning unobstructed paths in traffic-aware spatial networks. Geo Informatica, 2015, 19(4):723-746. [21] Soma S C, Hashem T, Cheema M A, Samrose S. Trip planning queries with location privacy in spatial databases. World Wide Web:Internet and Web Information Systems, 2017, 20(2):205-236. [22] Zheng B L, Su H, Hua W, Zheng K, Zhou X F, Li G H. Efficient clue-based route search on road networks. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(9):1846-1859. [23] Xu J J, Gao Y J, Liu C F, Zhao L, Ding Z M. Efficient route search on hierarchical dynamic road networks. Distributed and Parallel Databases, 2015, 33(2):227-252. [24] Liang S S, Yilmaz E, Shen H, Rijke M D, Croft W B. Search result diversification in short text streams. ACM Transactions on Information Systems, 2017, 36(1):Article No. 8. [25] Angel A, Koudas N. Efficient diversity-aware search. In Proc. the 30th ACM SIGMOD International Conference on Management of Data, June 2011, pp.781-792. [26] Khan H A, Sharaf M A. Model-based diversification for sequential exploratory queries. Data Science and Engineering, 2017, 2(2):151-168. [27] Chen L S, Cong G. Diversity-aware top-k publish/subscribe for text stream. In Proc. the 34th ACM SIGMOD International Conference on Management of Data, May 2015, pp.347-362. [28] Fan W F, Wang X, Wu Y H. Diversified top-k graph pattern matching. Proceedings of the VLDB Endowment, 2013, 6(13):1510-1521. [29] Yuan L, Qin l, Lin X M, Chang L J, Zhang W J. Diversified top-k clique search. The International Journal on Very Large Data Bases, 2016, 25(2):171-196. [30] Carbonell J G, Goldstein-Stewart J. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proc. the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 1998, pp.335-336. [31] Vieira M R, Razente H L, Barioni M C, Hadjieleftheriou M, Srivastava D, Traina C, Tsotras V J. On query result diversification. In Proc. the 27th International Conference on Data Engineering, April 2011, pp.1163-1174. [32] Qin L, Yu Y J, Chang L J. Diversifying top-k results. Proceedings of the VLDB Endowment, 2012, 5(11):1124-1135. [33] Garey M R, Johnson D S. Computers and intractability:A guide to the theory of NP-completeness. Society for Industrial and Applied Mathematics, 1982, 24(1):90-91. [34] Jain A, Sarda P, Haritsa J R. Providing diversity in knearest neighbor query results. In Proc. the 8th PacificAsia Conference on Knowledge Discovery and Data Mining, May 2004, pp.404-413. [35] Lee K C K, Lee W C, Leong H V. Nearest surrounder queries. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1444-1458. [36] Kucuktunc O, Ferhatosmanoglu H. λ-diverse nearest neighbors browsing for multidimensional data. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(3):481-493. [37] Ference G, Lee W C, Jung H J, Yang D N. Spatial search for K diverse-near neighbors. In Proc. the 22nd ACM International Conference on Information and Knowledge Management, October 2013, pp.19-28. [38] Zhang C Y, Zhang Y, Zhang W J, Lin X M, Cheema M A, Wang X Y. Diversified spatial keyword search on road networks. In Proc. the 17th International Conference on Extending Database Technology, March 2014, pp.367-378. [39] Godsil C, Royle G F. Algebraic Graph Theory. Springer, 2001. [40] Chiba N, Nishizeki T. Arboricity and subgraph listing algorithms. SIAM Journal on Computing, 1985, 14(1):210-223. [41] Bao J, Zheng Y, Mokbel M F. Location-based and preference-aware recommendation using sparse geo-social networking data. In Proc. the 20th International Conference on Advances in Geographic Information Systems, November 2012, pp.199-208. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |