计算机科学技术学报 ›› 2019,Vol. 34 ›› Issue (4): 869-886.doi: 10.1007/s11390-019-1947-3

所属专题: 综述 Computer Architecture and Systems Computer Networks and Distributed Computing

• • 上一篇    下一篇

车辆环境中边缘运算的应用:对比研究和主要问题

Leo Mendiboure1, Student Member, IEEE, Mohamed-Aymen Chalouf2, Francine Krief3   

  1. 1 LaBRI Laboratory, University of Bordeaux, Talence 33400, France;
    2 IRISA Laboratory, University of Rennes 1, Lannion 22300, France;
    3 LaBRI Laboratory, Bordeaux INP, Talence 33400, France
  • 收稿日期:2018-08-20 修回日期:2019-05-15 出版日期:2019-07-11 发布日期:2019-07-11
  • 作者简介:Leo Mendiboure is a Ph.D.student at the University of Bordeaux,Talence,working under the supervision of Prof.Francine Krief and Dr.Mohamed-Aymen Chalouf.He received his Master's degree in telecommunications engineering,from the ENSEIRB-MATMECA School of Engineers,Bordeaux,in October 2017.Since 2018,he is member of CNRS LaBRI Laboratory,UMR 5800, "Programming,Networks and Systems" team.His main research interests include vehicular networks,virtualization and management of Quality of Service.

Edge Computing Based Applications in Vehicular Environments: Comparative Study and Main Issues

Leo Mendiboure1, Student Member, IEEE, Mohamed-Aymen Chalouf2, Francine Krief3   

  1. 1 LaBRI Laboratory, University of Bordeaux, Talence 33400, France;
    2 IRISA Laboratory, University of Rennes 1, Lannion 22300, France;
    3 LaBRI Laboratory, Bordeaux INP, Talence 33400, France
  • Received:2018-08-20 Revised:2019-05-15 Online:2019-07-11 Published:2019-07-11

尽管付出了极大的努力,车载自组织网络(VANETs)仍然面临许多问题,诸如:网络性能,网络可扩展性和场景感知。为了克服这些问题,提出了很多解决方案,其中,作为云计算的扩展的边缘计算就是其一。使用边缘运算,通信,存储和计算能力拉近了终端用户之间的距离。这能给全球车辆网络带来很多好处,例如,低延迟,网络卸载和场景感知(地点,环境因素等等)。已有很多边缘计算方法,例如:移动边缘运算(MEC),雾计算(FC)和微云计算(cloudlet)。介绍车辆环境背景之后,本文旨在研究和对比这些不同的技术。具体地,本文分析了它们的主要特征,以及在VANETs中最先进的应用。此外,对MEC,FC和微云运算进行分类,并且探讨了对于不同类型的车辆应用而言,它们的适用水平。最后,我们讨论了边缘计算和VANET领域的一些挑战及其未来的发展方向。

关键词: 云计算, 边缘计算, 雾计算, 微云计算, 车辆网络

Abstract: Despite the expanded efforts, the vehicular ad-hoc networks (VANETs) are still facing many challenges such as network performances, network scalability and context-awareness. Many solutions have been proposed to overcome these obstacles, and the edge computing, an extension of the cloud computing, is one of them. With edge computing, communication, storage and computational capabilities are brought closer to end users. This could offer many benefits to the global vehicular network including, for example, lower latency, network off-loading and context-awareness (location, environment factors, etc.). Different approaches of edge computing have been developed:mobile edge computing (MEC), fog computing (FC) and cloudlet are the main ones. After introducing the vehicular environment background, this paper aims to study and compare these different technologies. For that purpose their main features are compared and the state-ofthe-art applications in VANETs are analyzed. In addition, MEC, FC, and cloudlet are classified and their suitability level is debated for different types of vehicular applications. Finally, some challenges and future research directions in the fields of edge computing and VANETs are discussed.

Key words: cloud computing, edge computing, fog computing, cloudlet, vehicular network

[1] Vijayakumar P, Azees M, Kannan A, Deborah L J. Dual authentication and key management techniques for secure data transmission in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4):1015-1028.
[2] Zheng K, Zheng Q, Chatzimisios P, Xiang W, Zhou Y. Heterogeneous vehicular networking:A survey on architecture, challenges, and solutions. IEEE Communications Surveys & Tutorials, 2015, 17(4):2377-2396.
[3] Bouali T, Senouci S M. A fuzzy logic-based communication medium selection for QoS preservation in vehicular networks. In Proc. the 5th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, November 2015, pp.101-108.
[4] He D, Zeadally S, Xu B, Huang X. An efficient identitybased conditional privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE Transactions on Information Forensics and Security, 2015, 10(12):2681-2691.
[5] La Vinh H, Cavalli A. Security attacks and solutions in vehicular ad hoc networks:A survey. International Journal on Ad Hoc Networking Systems, 2014, 4(2):1-20.
[6] Raw R S, Kumar M, Singh N. Security challenges, issues and their solutions for VANET. International Journal of Network Security & Its Applications, 2013, 5(5):95-105.
[7] Liang W, Li Z, Zhang H, Wang S, Bie R. Vehicular ad hoc networks:Architectures, research issues, methodologies, challenges, and trends. International Journal of Distributed Sensor Networks, 2015, 11:Article No. 745303.
[8] Rasheed A, Gillani S, Ajmal S, Qayyum A. Vehicular ad hoc network (VANET):A survey, challenges, and applications. In Proc. the 2nd Int. Workshop on Vehicular Ad-Hoc Networks for Smart Cities, April 2016, pp.39-51.
[9] Hussain R, Son J, Eun H, Kim S, Oh H. Rethinking vehicular communications:Merging VANET with cloud computing. In Proc. the 4th IEEE International Conference on Cloud Computing Technology and Science, December 2012, pp.606-609.
[10] Jabbarpour M R, Marefat A, Jalooli A, Zarrabi H. Couldbased vehicular networks:A taxonomy, survey, and conceptual hybrid architecture. Wireless Networks, 2019, 25(1):335-354.
[11] Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing:Vision and challenges. IEEE Internet of Things Journal, 2016, 3(5):637-646.
[12] Ha K, Pillai P, Lewis G, Simanta S, Clinch S, Davies N, Satyanarayanan M. The impact of mobile multimedia applications on data center consolidation. In Proc. the 2013 IEEE International Conference on Cloud Engineering, March 2013, pp.166-176.
[13] Dolui K, Datta S K. Comparison of edge computing implementations:Fog computing, cloudlet and mobile edge computing. In Proc. the 2017 Global Internet of Things Summit, June 2017, Article No. 77.
[14] Baktir A C, Ozgovde A, Ersoy C. How can edge computing benefit from software-defined networking:A survey, use cases, and future directions. IEEE Communications Surveys & Tutorials, 2017, 19(4):2359-2391.
[15] Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W. A survey on mobile edge networks:Convergence of computing, caching and communications. IEEE Access, 2017, 5:6757-6779.
[16] Borcoci E, Vochin M, Obreja S. Mobile edge computing versus fog computing in Internet of Vehicles. In Proc. the 10th International Conference on Advances in Future Internet, September 2018, pp.8-15.
[17] Yaqoob I, Ahmad I, Ahmed E, Gani A, Imran M, Guizani N. Overcoming the key challenges to establishing vehicular communication:Is SDN the answer? IEEE Communications Magazine, 2017, 55(7):128-134.
[18] Huang X, Yu R, Kang J, He Y, Zhang Y. Exploring mobile edge computing for 5G-enabled software defined vehicular networks. IEEE Wireless Communications, 2017, 24(6):55-63.
[19] Anaya J J, Merdrignac P, Shagdar O, Nashashibi F, Naranjo J E. Vehicle to pedestrian communications for protection of vulnerable road users. In Proc. the 2014 IEEE Intelligent Vehicles Symposium, June 2014, pp.1037-1042.
[20] Ota Y, Taniguchi H, Nakajima T, Liyanage K M, Baba J, Yokoyama A. Autonomous distributed V2G (vehicle-togrid) satisfying scheduled charging. IEEE Transactions on Smart Grid, 2012, 3(1):559-564.
[21] Tomar R, Prateek M, Sastry G H. Vehicular ad hoc network (vanet)-An introduction. International Journal of Control Theory and Applications, 2016, 9(18):8883-8888.
[22] Bergenhem C, Shladover S, Coelingh E, Englund C, TsugAwa S. Overview of platooning systems. In Proc. the 19th ITS World Congress, October 2012, Article No. EU-00336.
[23] Fagnant D J, Kockelman K M. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transportation Research Part C:Emerging Technologies, 2014, 40:1-13.
[24] Umamaheswari S, Priya R M. An efficient healthcare monitoring system in vehicular ad hoc networks. International Journal of Computer Applications, 2013, 78(7):45-49.
[25] Liu L, Zhang X, Qiao M, Shi W. SafeShareRide:Edgebased attack detection in ridesharing services. In Proc. the 2018 IEEE/ACM Symposium on Edge Computing, October 2018, pp.17-29.
[26] Satyanarayanan M, Bahl P, Cáceres R, Davies N. The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 2009, 8(4):14-23.
[27] Satyanarayanan M. The emergence of edge computing. IEEE Computer, 2017, 50(1):30-39.
[28] Bilal K, Khalid O, Erbad A, Khan S U. Potentials, trends, and prospects in edge technologies:Fog, cloudlet, mobile edge, and micro data centers. Computer Networks, 2018, 130:94-120.
[29] Jelassi S, Bouzid A, Youssef H. QoE-driven video streaming system over cloud-based VANET. In Proc. the 8th International Workshop on Communication Technologies for Vehicles, May 2015, pp.84-93.
[30] Garai M, Rekhis S, Boudriga N. Communication as a service for cloud VANETs. In Proc. the 2015 IEEE Symposium on Computers and Communication, July 2015, pp.371-377.
[31] Yu R, Ding J, Huang X, Zhou M T, Gjessing S, Zhang Y. Optimal resource sharing in 5G-enabled vehicular networks:A matrix game approach. IEEE Transactions on Vehicular Technology, 2016, 65(10):7844-7856.
[32] Otomo M, Sato G, Shibata Y. In-vehicle cloudlet computing based on delay tolerant network protocol for disaster information system. In Proc. the 11th International Conference on Broad-Band and Wireless Computing, Communication and Applications, November 2016, pp.255-266.
[33] Hagenauer F, Sommer C, Higuchi T, Altintas O, Dressler F. Vehicular micro clouds as virtual edge servers for efficient data collection. In Proc. the 2nd ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services, October 2017, pp.31-35.
[34] Wang C, Li Y, Jin D, Chen S. On the serviceability of mobile vehicular cloudlets in a large-scale urban environment. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10):2960-2970.
[35] Li L, Li Y, Hou R. A novel mobile edge computing-based architecture for future cellular vehicular networks. In Proc. the 2017 IEEE Wireless Communications and Networking Conference, March 2017, Article No. 352.
[36] Yuan Q, Zhou H, Li J, Liu Z, Yang F, Shen X S. Toward efficient content delivery for automated driving services:An edge computing solution. IEEE Network, 2018, 32(1):80-86.
[37] Liu J, Wan J, Zeng B, Wang Q, Song H, Qiu M. A scalable and quick-response software defined vehicular network assisted by mobile edge computing. IEEE Communications Magazine, 2017, 55(7):94-100.
[38] Zhang K, Mao Y, Leng S, He Y, Zhang Y. Mobileedge computing for vehicular networks:A promising network paradigm with predictive off-loading. IEEE Vehicular Technology Magazine, 2017, 12(2):36-44.
[39] Huang C M, Chiang M S, Dao D T, Su W L, Xu S, Zhou H. V2V data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture. IEEE Access, 2018, 6:17741-17755.
[40] Vigneri L, Spyropoulos T, Barakat C. Quality of experienceaware mobile edge caching through a vehicular cloud. In Proc. the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, November 2017, pp.91-98.
[41] Datta S K, Bonnet C, Haerri J. Fog computing architecture to enable consumer centric Internet of things services. In Proc. the 2015 International Symposium on Consumer Electronics, June 2015, Article No. 15.
[42] Wang X, Ning Z, Wang L. Offloading in Internet of Vehicles:A fog-enabled real-time traffic management system. IEEE Transactions on Industrial Informatics, 2018, 14(10):4568-4578.
[43] Sookhak M, Yu F R, He Y, Talebian H, Safa N S, Zhao N, Khan M K, Kumar N. Fog vehicular computing:Augmentation of fog computing using vehicular cloud computing. IEEE Vehicular Technology Magazine, 2017, 12(3):55-64.
[44] Hou X, Li Y, Chen M, Wu D, Jin D, Chen S. Vehicular fog computing:A viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular Technology, 2016, 65(6):3860-3873.
[45] Zhang W, Zhang Z, Chao H C. Cooperative fog computing for dealing with big data in the Internet of Vehicles:Architecture and hierarchical resource management. IEEE Communications Magazine, 2017, 55(12):60-67.
[46] Darwish T S, Bakar K A. Fog based intelligent transportation big data analytics in the Internet of Vehicles environment:Motivations, architecture, challenges, and critical issues. IEEE Access, 2018, 6:15679-15701.
[47] Yu R, Zhang Y, Gjessing S, Xia W, Yang K. Toward cloudbased vehicular networks with efficient resource management. IEEE Network, 2013, 27(5):48-55.
[48] Grover J, Jain A, Singhal S, Yadav A. Real-time VANET applications using fog computing. In Proc. the 1st International Conference on Smart System, Innovations and Computing, April 2017, pp.683-691.
[49] Hasrouny H, Samhat A E, Bassil C, Laouiti A. VANet security challenges and solutions:A survey. Vehicular Communications, 2017, 7:7-20.
[50] Wang L, Liu G, Sun L. A secure and privacy-preserving navigation scheme using spatial crowdsourcing in fog-based VANETs. Sensors, 2017, 17(4):Article No. 668.
[51] Mukherjee M, Matam R, Shu L, Maglaras L, Ferrag M A, Choudhury N, Kumar V. Security and privacy in fog computing:Challenges. IEEE Access, 2017, 5:19293-19304.
[52] Huang C, Lu R, Choo K K R. Vehicular fog computing:Architecture, use case, and security and forensic challenges. IEEE Communications Magazine, 2017, 55(11):105-111.
[53] Shaukat U, Ahmed E, Anwar Z, Xia F. Cloudlet deployment in local wireless networks:Motivation, architectures, applications, and open challenges. Journal of Network and Computer Applications, 2016, 62:18-40.
[54] Alouache L, Nguyen N, Aliouat M, Chelouah R. Nouveau protocole robuste pour les communications dans l'IoV. Internet des objets, 2017, 17-1(1):3-19. (in French)
[55] Oliveira R, Montez C, Boukerche A, Wangham M S. Reliable data dissemination protocol for VANET traffic safety applications. Ad Hoc Networks, 2017, 63:30-44.
[56] Rasool I U, Zikria Y B, Kim S W. A review of wireless access vehicular environment multichannel operational medium access control protocols:Quality-of-service analysis and other related issues. International Journal of Distributed Sensor Networks, 2017, 13(5):Article No. 23.
[57] Li H, Shou G, Hu Y, Guo Z. Mobile edge computing:Progress and challenges. In Proc. the 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, March 2016, pp.83-84.
[58] Mekki T, Jabri I, Rachedi A, ben Jemaa M. Vehicular cloud networks:Challenges, architectures, and future directions. Vehicular Communications, 2017, 9:268-280.
[59] Skarlat O, Nardelli M, Schulte S, Dustdar S. Towards QoSaware fog service placement. In Proc. the 1st IEEE International Conference on Fog and Edge Computing, May 2017, pp.89-96.
[60] Jiang Y, Huang Z, Tsang D H. Challenges and solutions in fog computing orchestration. IEEE Network, 2018, 32(3):122-129.
[61] Ahmed E, Rehmani M H. Mobile edge computing:Opportunities, solutions, and challenges. Future Generation Computer Systems, 2017, 70:59-63.
[62] Zhang H, Liu N, Chu X, Long K, Aghvami A H, Leung V C. Network slicing based 5G and future mobile networks:Mobility, resource management, and challenges. IEEE Communications Magazine, 2017, 55(8):138-145.
[63] Chang C Y, Alexandris K, Nikaein N, Katsalis K, Spyropoulos T. MEC architectural implications for LTE/LTEA networks. In Proc. the 2016 Workshop on Mobility in the Evolving Internet Architecture, October 2016, pp.13-18.
[1] Jiang Rong, Tao Qin, Bo An. 基于长远利益和竞争优化的云计算定价[J]. 计算机科学技术学报, 2019, 34(3): 645-656.
[2] Fateh Boucenna, Omar Nouali, Samir Kechid, M. Tahar Kechadi. 用户访问权限管理加密云数据的安全反向索引搜索[J]. 计算机科学技术学报, 2019, 34(1): 133-154.
[3] Yang Li, Wen-Zhuo Song, Bo Yang. 一种针对大规模文本处理的基于随机变分推理的并行在线监督主题模型[J]. 计算机科学技术学报, 2018, 33(5): 1007-1022.
[4] Bao-Kun Zheng, Lie-Huang Zhu, Meng Shen, Feng Gao, Chuan Zhang, Yan-Dong Li, Jin. 基于区块链的可扩展和隐私保护的数据共享[J]. , 2018, 33(3): 557-567.
[5] An-Zhen Zhang, Jian-Zhong Li, Hong Gao, Yu-Biao Chen, Heng-Zhao Ma, Mohamed Jawa. CrowdOLA:重复数据上基于众包的在线聚集查询系统[J]. , 2018, 33(2): 366-379.
[6] Wei-Qing, Liu Jing Li. 面向仅有稀疏数据的移动云应用的一种自动化性能预测方法[J]. , 2017, 32(5): 936-956.
[7] Yuhun Jun, Jaemin Lee, Euiseong Seo. 一种基于分布式共享存储的计算迁移模式的远程I/O支持的评估方法[J]. , 2017, 32(5): 957-973.
[8] Dong-Gang Cao, Bo An, Pei-Chang Shi, Huai-Min Wang. 虚拟专用云:云际计算下的新型云服务[J]. , 2017, 32(2): 211-218.
[9] Yun-Gang Bao, Sa Wang. 面向软件定义云计算的标签化冯诺依曼体系结构[J]. , 2017, 32(2): 219-223.
[10] Zuo-Ning Chen, Kang Chen, Jin-Lei Jiang, Lu-Fei Zhang, Song Wu, Zheng-Wei Qi, Ch. 云操作系统演进:从技术到生态[J]. , 2017, 32(2): 224-241.
[11] Bin-Lei Cai, Rong-Qi Zhang, Xiao-Bo Zhou, Lai-Ping Zhao, Ke-Qiu Li. 体验可用性:面向尾延迟的软件定义的云计算的可用性[J]. , 2017, 32(2): 250-257.
[12] Xian-Mang He, Xiaoyang Sean Wang, Member, CCF, ACM, IEEE, Dong Li, Yan-Ni Hao. 半同构泛化:改进同构泛化在云计算中的隐私保护[J]. , 2016, 31(6): 1124-1135.
[13] Farrukh Nadeem, Rizwan Qaiser. 三个私有云计算软件平台的早期评估与比较[J]. , 2015, 30(3): 639-654.
[14] Shu-Sheng Guo, Zi-Mu Yuan, Ao-Bing Sun, Qiang Yue. 一种基于数据虚拟化的新型ETL方法[J]. , 2015, 30(2): 311-323.
[15] 邱杰凡, 李栋, 石海龙, 侯陈达, 崔莉. EasiSMP:一种支持REST资源运行时繁殖的编程架构[J]. , 2014, 29(2): 194-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] C.Y.Chung; 华宣仁;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[2] 章萃; 赵沁平; 徐家福;. Kernel Language KLND[J]. , 1986, 1(3): 65 -79 .
[3] 黄学东; 蔡莲红; 方棣棠; 迟边进; 周立; 蒋力;. A Computer System for Chinese Character Speech Input[J]. , 1986, 1(4): 75 -83 .
[4] 唐同诰; 招兆铿;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[5] 夏培肃; 方信我; 王玉祥; 严开明; 张廷军; 刘玉兰; 赵春英; 孙继忠;. Design of Array Processor Systems[J]. , 1987, 2(3): 163 -173 .
[6] 孙永强; 陆汝占; 黄小戎;. Termination Preserving Problem in the Transformation of Applicative Programs[J]. , 1987, 2(3): 191 -201 .
[7] 林琦; 夏培肃;. The Design and Implementation of a Very Fast Experimental Pipelining Computer[J]. , 1988, 3(1): 1 -6 .
[8] 谢立; 陈珮珮; 杨培根; 孙钟秀;. The Design and Implementation of an OA System ZGL1[J]. , 1988, 3(1): 75 -80 .
[9] 罗银芳;. Algorithm and Implementation of Parallel Multiplication in a Mixed Number System[J]. , 1988, 3(3): 203 -213 .
[10] 陈国良;. A Partitioning Selection Algorithm on Multiprocessors[J]. , 1988, 3(4): 241 -250 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: