|
计算机科学技术学报 ›› 2020,Vol. 35 ›› Issue (2): 412-417.doi: 10.1007/s11390-020-9707-y
Wen-Yan Chen1, Ke-Jiang Ye1,*, Member, CCF, Cheng-Zhi Lu1, Dong-Dai Zhou2, Member, CCF, Cheng-Zhong Xu3, Fellow, IEEE
Wen-Yan Chen1, Ke-Jiang Ye1,*, Member, CCF, Cheng-Zhi Lu1, Dong-Dai Zhou2, Member, CCF, Cheng-Zhong Xu3, Fellow, IEEE
负载特征对于资源管理和调度至关重要。近年来,随着容器技术的快速发展,越来越多的云服务提供商如谷歌和阿里巴巴采用容器来提供云服务以降低成本。然而,多种基于容器的服务(例如交互式在线服务、离线计算或媒体流服务)的混部特征仍然不明确。本文从硬件事件的角度对同一服务器上运行的基于容器的负载特征进行了综合分析。我们的研究从微架构层量化和揭示了当负载使用不同的混部模式进行混部时的系统行为。通过对典型硬件事件的分析,我们给出了推荐/不推荐的混部负载模式,为数据中心管理员提供了有价值的部署建议。
[1] Lu C, Ye K, Xu G et al. Imbalance in the cloud:An analysis on Alibaba cluster trace. In Proc. the 2017 IEEE Int. Big Data, December 2017, pp.2884-2892. [2] Panda S K, Jana P K. SLA-based task scheduling algorithms for heterogeneous multi-cloud environment. The Journal of Supercomputing, 2017, 73(6):2730-2762. [3] Hosseinimotlagh S, Khunjush F, Samadzadeh R. Seats:Smart energy-aware task scheduling in real-time cloud computing. The Journal of Supercomputing, 2015, 71(1):45-66. [4] Shen Y, Bao Z, Qin X et al. Adaptive task scheduling strategy in cloud:When energy consumption meets performance guarantee. World Wide Web, 2017, 20(2):155-173. [5] Gao W, Zhan J, Wang L et al. BigDataBench:A scalable and unified big data and AI benchmark suite. arXiv:1802.08254, 2018. https://arxiv.org/abs/1802.08254,November 2019. [6] Ferdman M, Adileh A, Koçberber O et al. Clearing the clouds:A study of emerging scale-out workloads on modern hardware. ACM SIGPLAN Notices, 2012, 47(4):37-48. [7] Jia Z, Zhan J, Wang L et al. Understanding big data analytics workloads on modern processors. IEEE Trans. Parallel and Distributed Systems, 2017, 28(6):1797-1810. [8] Chen W, Ye K, Xu C. Co-locating online workload and offline workload in the cloud:An interference analysis. In Proc. the 21st Int. High Performance Computing and Communications, August 2019, pp.2278-2283. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |