|
计算机科学技术学报 ›› 2021,Vol. 36 ›› Issue (1): 221-230.doi: 10.1007/s11390-020-9418-4
所属专题: Theory and Algorithms
• • 上一篇
Zhi-Hao Liu and Han-Wu Chen
1、研究背景(context)。
基于量子特性的安全通信具有理论上无条件安全性,是当前相关工作者研究的热点方向,它具有广泛的应用潜力。现在相关学者提出了很多量子安全通信协议,获得了不少理论成果。但是,人们对于一种新的安全通信模式——方同时向多方发送不同的秘密信息考虑甚少。
2、目的(Objective):准确描述该研究的目的,说明提出问题的缘由,表明研究的范围和重要性。本文目的在于如何利用量子态的性质解决一方向多方同时发送不同多值经典秘密信息的问题,拓展量子安全通信方式,提供相关理论结果。
3、方法(Method):简要说明研究课题的基本设计,结论是如何得到的。本文在充分分析量子一维多元cluster态性质的基础上,采用量子密度编码思想,提出一种新型量子安全通信协议——具有通用性和一般性的量子同时秘密分发协议;提出一种新型的窃听检测方法和一种新型攻击方法——般个体攻击。4
、结果(Result & Findings):简要列出该研究的主要结果,有什么新发现,说明其价值和局限。叙述要具体、准确,尽量给出量化数据而不只是定性描述,并给出结果的置信值(如果有)。基于量子一维多元cluster态性质,提出具有通用性和一般性的量子同时秘密分发协议,解决了一方同时向不同接收方发送不同多值经典信息的问题。分析表明传统的量子密码攻击的一般个体攻击的特例。提出的新型窃听检测方法能有效防止传统攻击和一般个体攻击。如将该量子同时秘密分发协议稍加改动,可以得到多方量子秘密报告(多方量子秘密提交)协议。
5、结论(Conclusions):简要地说明经验,论证取得的正确观点及理论价值或应用价值,是否还有与此有关的其它问题有待进一步研究,是否可推广应用,其应用价值如何? 结果表明所提出的具有通用性和一般性的量子同时秘密分发协议解决了一方向多方同时发送不同多值经典秘密信息的问题,该安全通信模式是一种新型通信模式,具有一定理论价值和潜在应用场景。协议需要利用量子一维高元cluster态,如将之推广应用,需进一步研究如何在实验上制备和测量这种量子态以及实现高元单粒子测量等。
[1] Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1):145-195. DOI:10.1103/RevModPhys.74.145. [2] Bennett C H, Brassard G. Quantum cryptography:Public key distribution and coin tossing. In Proc. IEEE International Conference on Computers, Systems & Signal Processing, December 1984, pp.175-179. [3] Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussieres F, Li M J, Nolan D, Martin A, Zbinden H. Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 2018, 121(19):Article No. 190502. DOI:10.1103/PhysRevLett.121.190502. [4] Cao W F, Zhen Y Z, Zheng Y L, Li L, Chen Z B, Liu N L, Chen K. One-sided measurement-device-independent quantum key distribution. Physical Review A, 2018, 97(1):Article No. 012313. DOI:10.1103/physreva.97.012313. [5] Dellantonio L, Sorensen A S, Bacco D. High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Physical Review A, 2018, 98(6):Article No. 062301. DOI:10.1103/PhysRevA.98.062301. [6] Huang A Q, Sun S H, Liu Z H, Makarov V. Quantum key distribution with distinguishable decoy states. Physical Review A, 2018, 98(1):Article No. 012330. DOI:10.1103/PhysRevA.98.012330. [7] Islam N T, Lim C C W, Cahall C, Kim J, Gauthier D J. Securing quantum key distribution systems using fewer states. Physical Review A, 2018, 97(4):Article No. 042347. DOI:10.1103/PhysRevA.97.042347. [8] Pivoluska M, Huber M, Malik M. Layered quantum key distribution. Physical Review A, 2018, 97(3):Article No. 032312. DOI:10.1103/PhysRevA.97.032312. [9] Huang P, Huang J Z, Zhang Z S, Zeng G H. Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Physical Review A, 2018, 97(4):Article No. 042311. DOI:10.1103/PhysRevA.97.042311. [10] Lai H, Luo M X, Pieprzyk J, Zhang J, Pan L, Orgun M A. High-rate and high-capacity measurementdevice-independent quantum key distribution with Fibonacci matrix coding in free space. Science ChinaInformation Sciences, 2018, 61(6):Article No. 062501. DOI:10.1007/s11432-017-9291-6. [11] Blakley G R. Safeguarding cryptographic keys. In Proc. the National Computer Conference, June 1979, pp.313-317. DOI:10.1109/AFIPS.1979.98. [12] Shamir A. How to share a secret. Communications of the ACM, 1979, 22(11):612-613. DOI:10.1145/359168.359176. [13] Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Physical Review Letters, 1999, 83(3):648-651. DOI:10.1103/PhysRevLett.83.648. [14] Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Physical Review A, 1999, 59(3):1829-1834. DOI:10.1103/PhysRevA.59.1829. [15] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Physical Review A, 1999, 59(1):162-168. DOI:10.1103/PhysRevA.59.162. [16] Wang J, Li L, Peng H, Yang Y. Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Physical Review A, 2017, 95(2):Article No. 022320. DOI:10.1103/PhysRevA.95.022320. [17] Lu C, Miao F, Meng K, Yu Y. Threshold quantum secret sharing based on single qubit. Quantum Information Processing, 2018, 17(3):Article No. 64. DOI:10.1007/s11128- 017-1793-6. [18] Qin H, Tso R. High-capacity quantum secret sharing based on orbital angular momentum. Quantum Information & Computation, 2018, 18(7/8):579-591. DOI:10.5555/3370256.3370259. [19] Song Y, Li Z, Li Y. A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum Information Processing, 2018, 17(9):Article No. 244. DOI:10.1007/s11128-018-1970-2. [20] Zhou Y, Yu J, Yan Z, Jia X, Zhang J, Xie C, Peng K. Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Physical Review Letters, 2018, 121(15):Article No. 150502. DOI:10.1103/PhysRevLett.121.150502. [21] Long G L, Deng F G, Wang C, Li X H. Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China, 2007, 2(3):251- 272. DOI:10.1007/s11467-007-0050-3. [22] Li X H. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16):Article No. 0160307. DOI:10.7498/aps.64.160307. (in Chinese) [23] Wang J, Zhang Q, Tang C J. Quantum broadcast communication. Chinese Physics B, 2007, 16(7):1868-1877. DOI:1088/1009-1963/16/7/011. [24] Yang Y G, Wang Y H, Wen Q Y. Quantum broadcast communication with authentication. Chinese Physics B, 2010, 19(7):63-67. DOI:10.1088/1674-1056/19/7/070304. [25] Liu Z H, Chen H W. Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad. Chinese Physics B, 2016, 25(8):63-68. DOI:CNKI:SUN:ZGWL.0.2016-08-010. [26] Deng F G, Li X H, Li C Y, Zhou P, Liang Y J, Zhou H Y. Multiparty quantum secret report. Chinese Physics Letters, 2006, 23(7):1676-1679. DOI:10.1088/0256- 307X/23/7/006. [27] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhou H Y. Multiparty quantum remote secret conference. Chinese Physics Letters, 2007, 24(1):23-26. DOI:10.1088/0256- 307X/24/1/007. [28] Nguyen B A. Quantum exam. Physics Letters A, 2006, 350(3/4):174-178. DOI:10.1016/j.physleta.2005.09.071. [29] Gao F, Wen Q Y, Zhu F C. Comment on:\Quantum exam"[phys. Lett. A 350(2006) 174]. Physics Letters A, 2007, 360(6):748-750. DOI:10.1016/j.physleta.2006.08.016. [30] Song J, Zhang S. Comment on:\Quantum exam"[phys. Lett. A 350(2006) 174]. Physics Letters A, 2007, 360(6):746-747. DOI:10.1016/j.physleta.2006.08.019. [31] Man Z X, Xia Y J. Efficient one-sender versus N-receiver quantum secure direct communication. Chinese Physics Letters, 2006, 23(8):1973-1975. DOI:10.1088/0256- 307X/23/8/004. [32] Gao F, Lin S, Wen Q Y, Zhu F C. A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chinese Physics Letters, 2008, 25(5):1561-1563. DOI:10.1088/0256-307X/25/5/011. [33] Liu Z H, Chen H W, Liu W J, Xu J. Quantum simultaneous secret distribution with dense coding by using cluster states. Quantum Information Processing, 2013, 12(12):3745-3759. DOI:10.1007/s11128-013-0633-6. [34] Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Physical Review Letters, 2001, 86(5):910-913. DOI:10.17877/DE290R-12220. [35] Zhou D L, Zeng B, Xu Z, Sun C P. Quantum computation based on d-level cluster state. Physical Review A, 2003, 68(6):Article No. 062303. DOI:10.1103/PhysRevA.68.062303. [36] Wang X W, Shan Y G, Xia L X, Lu M W. Dense coding and teleportation with one-dimensional cluster states. Physics Letters A, 2007, 364(1):7-11. DOI:10.1016/j.physleta.2006.11.056. [37] Liu Z H, Chen H W, Liu W J, Xu J, Li Z Q. Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Science China-Information Sciences, 2012, 55(2):360-367. DOI:10.1007/s11432-011-4371-z. [38] Cai Q Y. The \ping-pong" protocol can be attacked without eavesdropping. Physical Review Letters, 2003, 91(10):Article No. 109801. DOI:10.1103/PhysRevLett.91.109801. [39] Liu Z H, Chen H W. Cryptanalysis of controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Communications Letters, 2017, 21(10):2202-2205. DOI:10.1109/LCOMM.2017.2721952. [40] Gisin N, Fasel S, Kraus B, Zbinden H, Ribordy G. Trojanhorse attacks on quantum-key-distribution systems. Physical Review A, 2006, 73(2):022320. DOI:10.1103/PHYSREVA.73.022320. [41] Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Physics Letters A, 2006, 351(1/2):23-25. DOI:10.1016/j.physleta.2005.10.050. [42] Deng F G, Zhou P, Li X H, Li C Y, Zhou H Y. Robustness of two-way quantum communication protocols against trojan horse attack. arXiv:0508168, 2005. https://arxiv.org/abs/quant-ph/0508168, Aug. 2020. [43] Li X H, Deng F G, Li C Y, Liang Y J, Zhou P, Zhou H Y. Deterministic secure quantum communication without maximally entangled states. Journal of the Korean Physical Society, 2006, 49(4):1354-1359. DOI:10.1007/s10854-006- 0034-z. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |