|
计算机科学技术学报 ›› 2021,Vol. 36 ›› Issue (2): 276-287.doi: 10.1007/s11390-021-0740-2
所属专题: Emerging Areas
Ling-Yun Dai, Member, CCF, Jin-Xing Liu*, Senior Member, CCF, Rong Zhu, Member, CCF, Juan Wang, Member, CCF, and Sha-Sha Yuan, Member, CCF
Ling-Yun Dai, Member, CCF, Jin-Xing Liu*, Senior Member, CCF, Rong Zhu, Member, CCF, Juan Wang, Member, CCF, and Sha-Sha Yuan, Member, CCF
1、研究背景(context)
MicroRNAs(miRNAs)广泛存在于生物基因组中,由内源性基因编码。MiRNAs可调控细胞分化、增殖、凋亡、生长、衰老、病毒感染等相关基因的表达。越来越多的研究表明,具有相似序列和二级结构的miRNAs可以很容易地作用于相似的生物学过程,并且miRNAs的异常表达可引起多种人类疾病。传统的生物实验方法可以很准确地推断出miRNA-疾病关联。然而,这些方法通常是耗时和昂贵的。随着越来越多的生物学数据库出现,使用计算方法来预测未知的miRNA-疾病关联已经成为生物信息学的一个研究热点。现代生物医学研究需要高效的计算模型预测潜在的miRNA-疾病关联,了解疾病的机制,从而提高生物学实验的效率。
2、目的(Objective):
我们的研究目的是设计一种高效的计算方法来预测miRNA-疾病关联,有助于人们理解人类疾病的发生和诊疗机制,促进药物研发。
3、方法(Method):
本文提出了LWBRW方法来预测潜在的miRNA-疾病关联。该方法首先,利用高斯互作谱和逻辑函数构建miRNA相似性网络和疾病相似性网络,并通过已知的miRNA-疾病关联将miRNA相似性网络和疾病相似性网络联系起来;其次,本文利用weighted K-nearest known neighbours(WKNKN)方法对已知的关联信息进行预处理;随后,在miRNA相似性网络和疾病相似性网络上使用双随机游走预测潜在的miRNA-疾病关联;最后,使用五折交叉验证和留一法评估LWBRW方法的预测性能,并通过案例研究证明该方法能够有效地预测潜在的miRNA-疾病关联。
4、结果(Result&Findings):
本文将LWBRW方法的关联预测能力与WBSMDA,LRSSLMDA,PBMDA,HDMP和RLSMDA五种方法相比较。五折交叉验证运行10次取平均值,LWBRW方法的AUC值为0.9393(0.0061),超过了其他五种方法:WBSMDA(0.8185),LRSSLMDA(0.9181),PBMDA(0.9172),HDMP(0.8432),RLSMDA(0.8569)。使用留一法评估,LWBRW方法的AUC值达到0.9763,而其他五种方法的AUC值分别为WBSMDA(0.8031),LRSSLMDA(0.9178),PBMDA(0.9169),HDMP(0.9431),RLSMDA(0.9511)。本文还进一步对前列腺肿瘤、肝脏肿瘤和淋巴瘤进行案例分析,证明LWBRW方法辨识miRNA-疾病关联的能力。
5、结论(Conclusions):
我们通过交叉验证和案例分析证明了该方法能够有效地辨识潜在的miRNA-疾病关联。然而,LWBRW方法也有一些不足之处。例如,一些重要的生物学信息,比如miRNAs的功能信息和疾病的表型信息,可以提高LWBRW算法的准确性和可靠性;已知的miRNA-疾病关联矩阵是高度稀疏的,积累和收集更多的实验证据,可以进一步验证该方法的预测能力。
[1] Akhtar M M, Micolucci L, Islam S M et al. Bioinformatic tools for microRNA dissection. Nucleic Acids Research, 2016, 44(1):24-44. DOI:10.1093/nar/gkv1221. [2] Miska E A. How microRNAs control cell division, differentiation and death. Current Opinion in Genetics & Development, 2005, 15(5):563-568. DOI:10.1016/j.gde.2005.08.005. [3] Cheng A M, Byrom M W, Shelton J et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research, 2005, 33(4):1290-1297. DOI:10.1093/nar/gki200. [4] Xu P, Guo M, Hay B A. MicroRNAs and the regulation of cell death. TRENDS in Genetics, 2004, 20(12):617-624. DOI:10.1016/j.tig.2004.09.010. [5] Alshalalfa M, Alhajj R. Using context-specific effect of miRNAs to identify functional associations between miRNAs and gene signatures. BMC Bioinformatics, 2013, 14(Suppl 12):Article No. S1. DOI:10.1186/1471-2105-14-S12-S1. [6] Fesler A, Zhai H, Ju J. miR-129 as a novel therapeutic target and biomarker in gastrointestinal cancer. OncoTargets and Therapy, 2004, 7:1481-1485. DOI:10.2147/OTT.S65548. [7] Wu C, Li M, Hu C et al. Clinical significance of serum miR-223, miR-25 and miR-375 in patients with esophageal squamous cell carcinoma. Molecular Biology Reports, 2014, 41(3):1257-1266. DOI:10.1007/s11033-013-2970-z. [8] Xiong S W, Lin T X, Xu K W et al. MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. Pathology Oncol. Res., 2013, 19(3):529-537. DOI:10.1007/s12253-013-9613-5. [9] Zhao H, Zhang J, Shao H et al. miRNA-340 inhibits osteoclast differentiation via repression of MITF. Bioscience Reports, 2017, 37(4):Article No. BSR20170302. DOI:10.1042/BSR20170302. [10] He F, Lv P, Zhao X et al. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Molecular and Cellular Biochemistry, 2014, 394(1/2):137-144. DOI:10.1007/s11010-014-2089-0. [11] Chen X, Xie D, Zhao Q et al. MicroRNAs and complex diseases:From experimental results to computational models. Briefings in Bioinformatics, 2019, 20(2):515-539. DOI:10.1093/bib/bbx130. [12] Chen X, Sun L G, Zhao Y. NCMCMDA:MiRNA-disease association prediction through neighborhood constraint matrix completion. Briefings in Bioinformatics, 2021, 22(1):485-496. DOI:10.1093/bib/bbz159. [13] Chen X, Zhu C C, Yin J. Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Computational Biology, 2019, 15(7):Article No. e1007209. DOI:10.1371/journal.pcbi.1007209. [14] Chen X, Huang L, Xie D, Zhao Q. EGBMMDA:Extreme gradient boosting machine for MiRNA-disease association prediction. Cell Death & Disease, 2018, 9(1):Article No. 3. DOI:10.1038/s41419-017-0003-x. [15] Huang F, Yue X, Xiong Z K et al. Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations. Briefings in Bioinformatics. DOI:10.1093/bib/bbaa140. [16] Zhang W, Li Z S, Guo W Z et al. A fast linear neighborhood similarity-based network link inference method to predict microRNA-disease associations. IEEE/ACM Transactions on Computational Biology and Bioinformatics. DOI:10.1109/TCBB.2019.2931546. [17] Chen M, Liao B, Li Z. Global similarity method based on a two-tier random walk for the prediction of microRNAdisease association. Scientific Reports, 2018, 8(1):Article No. 6481. DOI:10.1038/s41598-018-24532-7. [18] Gao Y L, Cui Z, Liu J X et al. NPCMF:Nearest profilebased collaborative matrix factorization method for predicting miRNA-disease associations. BMC Bioinformatics, 2019, 20(1):Article No. 353. DOI:10.1186/s12859-019-2956-5. [19] Yin M M, Cui Z, Gao Y L et al. LWPCMF:Logistic weighted profile-based collaborative matrix factorization for predicting MiRNA-disease associations. IEEE/ACM Transactions on Computational Biology and Bioinformatics. DOI:10.1109/TCBB.2019.2937774. [20] Jiang Q, Hao Y, Wang G et al. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Systems Biology, 2010, 4(Suppl 1):Article No. S2. DOI:10.1186/1752-0509-4-S1-S2. [21] Xuan P, Han K, Guo M et al. Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS ONE, 2013, 8(8):Article No. e70204. DOI:10.1371/journal.pone.0070204. [22] Xuan P, Han K, Guo Y et al. Prediction of potential diseaseassociated microRNAs based on random walk. Bioinformatics, 2015, 31(11):1805-1815. DOI:10.1093/bioinformatics/btv039. [23] Chen X, Liu M X, Yan G Y. RWRMDA:Predicting novel human microRNA-disease associations. Molecular BioSystems, 2012, 8(10):2792-2798. DOI:10.1039/c2mb25180a. [24] Mørk S, Pletscher-Frankild S, Palleja A et al. Protein-driven inference of miRNA-disease associations. Bioinformatics, 2014, 30(3):392-397. DOI:10.1093/bioinformatics/btt677. [25] Shi H B, Xu J, Zhang G D et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Systems Biology, 2013, 7(1):Article No. 101. DOI:10.1186/1752-0509-7-101. [26] Chen X, Niu Y W, Wang G H, Yan G Y. MKR-MDA:Multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction. Journal of Translational Medicine, 2017, 15(1):Article No. 251. DOI:10.1186/s12967-017-1340-3. [27] Chen X, Yan C C, Zhang X et al. WBSMDA:Within and between score for MiRNA-disease association prediction. Scientific Reports, 2016, 6(1):Article No. 21106. DOI:10.1038/srep21106. [28] You Z, Huang Z A, Zhu Z X et al. PBMDA:A novel and effective path-based computational model for miRNAdisease association prediction. PLoS Computational Biology, 2017, 13(3):Article No. e1005455. DOI:10.1371/journal.pcbi.1005455. [29] Claude P, Gardès J. Prediction of miRNA-disease associations with a vector space mode. Scientific Reports, 2016, 6(1):Article No. 27036. DOI:10.1038/srep27036. [30] Chen X, Huang L. LRSSLMDA:Laplacian regularized sparse subspace learning for MiRNA-disease association prediction. PLoS Computational Biology, 2017, 13(12):Article No. e1005912. DOI:10.1371/journal.pcbi.1005912. [31] Luo J, Xiao Q. A novel approach for predicting microRNAdisease associations by unbalanced bi-random walk on heterogeneous network. Journal of Biomedical Informatics, 2017, 66:194-203. DOI:10.1016/j.jbi.2017.01.008. [32] Chen X, Xie D, Wang L et al. BNPMDA:Bipartite network projection for MiRNA-disease association prediction. Bioinformatics, 2018, 34(18):3178-3186. DOI:10.1093/bioinformatics/bty333. [33] Chen X, Wang L, Qu J, Guan N N, Li J Q. Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics, 2018, 34(24):4256-4265. DOI:10.1093/bioinformatics/bty503. [34] Chen X, Yin J, Qu J, Huang L. MDHGI:Matrix decomposition and heterogeneous graph inference for miRNAdisease association prediction. PLoS Computational Biology, 2018, 14(8):Article No. e1006418. DOI:10.1371/journal.pcbi.1006418. [35] Zhao Y, Chen X, Yin J. Adaptive boosting-based computational model for predicting potential miRNA-disease associations. Bioinformatics, 2019, 35(22):4730-4738. DOI:10.1093/bioinformatics/btz297. [36] Wang L, You Z H, Chen X et al. LMTRDA:Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Computational Biology, 2019, 15(3):Article No. e1006865. DOI:10.1371/journal.pcbi.1006865. [37] Ezzat A, Zhao P, Wu M et al. Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 2017, 14(3):646-656. DOI:10.1109/TCBB.2016.2530062. [38] Yan C, Duan G H, Wu F X et al. BRWMDA:Predicting microbe-disease associations based on similarities and birandom walk on disease and microbe networks. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 2020, 17(5):1595-1604. DOI:10.1109/TCBB.2019.2907626. [39] Chen X, Yan G Y. Semi-supervised learning for potential human microRNA-disease associations inference. Scientific Reports, 2014, 4(1):Article No. 5501. DOI:10.1038/srep05501. [40] Sun Q, Zhao X, Liu X et al. miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1. The Prostate, 2014, 74(16):1613-1621. DOI:10.1002/pros.22878. [41] Wang B S, Liu Z, Xu W X et al. Functional polymorphisms in microRNAs and susceptibility to liver cancer:A meta-analysis and meta-regression. Genetics and Molecular Research, 2014, 13(3):5426-5440. DOI:10.4238/2014.July.24.22. [42] Guo H, Liu H, Mitchelson K et al. MicroRNAs-372/373 promote the expression of hepatitis B virus through the targeting of nuclear factor I/B. Hepatology, 2011, 54(3):808-819. DOI:10.1002/hep.24441. [43] Shi W, Zhang Z, Yang B et al. Overexpression of microRNA let-7 correlates with disease progression and poor prognosis in hepatocellular carcinoma. Medicine, 2017, 96(32):Article No. e7764. DOI:10.1097/MD.0000000000007764. [44] Karakatsanis A, Papaconstantinou I, Gazouli M et al. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangioca rcinoma and its prognostic significance. Molecular Carcinogenesis, 2013, 52(4):297-303. DOI:10.1002/MC.21864. [45] Kwanhian W, Lenze D, Alles J et al. MicroRNA-142 is mutated in about 20% of diffuse large B-cell lymphoma. Cancer Medicine, 2012, 1(2):141-155. DOI:10.1002/cam4.29. |
No related articles found! |
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |