|
计算机科学技术学报 ›› 2021,Vol. 36 ›› Issue (2): 445-462.doi: 10.1007/s11390-020-9901-y
所属专题: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining
• • 上一篇
Zeynep Banu Ozger1 and Nurgul Yuzbasioglu Uslu2
Zeynep Banu Ozger1 and Nurgul Yuzbasioglu Uslu2
1、目的(Objective):查询的响应时间可能会花费很多时间,具体取决于数据库的大小。SPARQL查询的响应时间可能与查询的三重顺序直接相关。通过找到最佳查询顺序,可以大大减少响应时间。对于n个三元组,有n个!可能的查询顺序,因此找到最佳查询顺序是一个挑战。为了减少从数据库查询时的时间成本,应该快速定义最佳三重顺序。
也就是说,某些形状经过优化后可以变成某些形状吗?
2、方法(Method):人工蜂群算法用于在sparql查询中找到优化的三阶。为了使算法适应该问题,已更新了算法步骤,以便可以在离散空间中搜索。
由于查询顺序更改时产生的响应,因此将优化阶段产生的每个查询的响应与原始查询响应进行比较。
为了防止重试相同的查询,已创建一个数据库,该数据库保留了所生成的查询和响应时间。生成新的查询序列时,首先查看数据库,如果没有,则将其发送到查询数据库。
由于目的是获得一个查询秘密,该秘密产生的时间少于默认查询布局的时间,因此如果达到了向数据库发送查询后已经经过的时间,但尚未产生新查询的答案,则在优化阶段会中断查询周期。
3、结果(Result&Findings):所提出的方法已经在12种不同类型和大小的查询上进行了测试。将结果与其他7种方法进行了比较。基于人工蜂群算法的查询优化方法优化的SPARQL查询取决于它们的查询类型,即使在大型查询中也可以在合理的时间执行优化,它在12个查询中的9个中取得了卓越的性能。
据调查,形状的三元组的位置对于优化很重要。优化结束后,原始查询形式将受到保护。已经发现优化查询中可能存在某种模式。
4、结论(Conclusions):基于人工蜂群的方法应用了4种不同的查询类型:链,星,循环和链星。该方法在所有循环查询中均取得了优异的结果。但是,6个三重链,6个三重星和12个三重星查询的性能还不错,但也不是最好的。可以看出,所提出的方法无论查询类型和查询大小如何都可以成功。
研究的范围可以扩展到在不同的查询引擎中运行不同大小的查询。
[1] Berners-Lee T, Hendler J, Lassila O. The semantic web. Scientific American, 2001, 284(5):34-43. DOI:10.1038/scientificamerican0501-34. [2] Ioannidis Y E. Query optimization. ACM Comput. Surv., 1996, 28(1):121-123. DOI:10.1145/234313.234367. [3] Karaboga D, Akay B. A survey:Algorithms simulating bee swarm intelligence. Artificial Intelligence Review, 2009, 31(1/2/3/4):61-85. DOI:10.1007/s10462-009-9127-4. [4] Kalayci E G, Kalayci T E, Birant D. An ant colony optimization approach for optimising SPARQL queries by reordering triple patterns. Information Systems, 2015, 50:51-68. DOI:10.1016/j.is.2015.01.013. [5] Li N, Li Y, Dong Y, Gu J. Application of ant colony optimization algorithm to multi-join query optimization. In Proc. the 3rd International Symposium on Computation and Intelligence, December 2008, pp.189-197. DOI:10.1007/978-3-540-92137-021. [6] Dokeroglu T, Cosar A. Dynamic programming with ant colony optimization metaheuristic for optimization of distributed database queries. In Proc. the 26th International Symposium on Computer and Information Systems, September 2011, pp.107-113. DOI:10.1007/978-1-4471-2155-813. [7] Shao C, Hu L M, Li J Z, Wang Z C, Chung T, Xia J B. RiMOM-IM:A novel iterative framework for instance matching. Journal of Computer Science and Technology, 2016, 31(1):185-197. DOI:10.1007/s11390-016-1620-z. [8] Belhadi H, Akli-Astouati K, Djenouri Y, Lin J C W, Wu J M T. GFSOM:Genetic feature selection for ontology matching. In Proc. the 12th International Conference on Genetic and Evolutionary Computing, December 2018, pp.655-660. DOI:10.1007/978-981-13-5841-868. [9] Mohammadi M, Hofman W, Tan Y H. Simulated annealingbased ontology matching. ACM Transactions on Management Information Systems, 2019, 10(1):Article No. 3. DOI:10.1145/3314948. [10] Saharan S, Lather J S, Radhakrishnan R. Optimisation using rearrangement of order of BGP and TLBO approach. Procedia Computer Science, 2018, 125:282-289. DOI:10.1016/j.procs.2017.12.038. [11] Hogenboom A, Frasincar F, Kaymak U. Ant colony optimization for RDF chain queries for decision support. Expert Systems with Applications, 2013, 40(5):1555-1563. DOI:10.1016/j.eswa.2012.08.074. [12] Neumann T, Weikum G. The RDF-3X engine for scalable management of RDF data. The VLDB Journal, 2010, 19(1):91-113. DOI:10.1007/s00778-009-0165-y. [13] Ruckhaus E, Ruiz E, Vidal M E. Query evaluation and optimization in the semantic web. Theory and Practice of Logic Programming, 2008, 8(3):393-409. DOI:10.1017/s1471068407003225. [14] Kalayci E G, Kalayci T E. Ant colony method for SPARQL query optimization. In Proc. the 2012 Innovations in Intelligent Systems and Applications Conference, July 2012, pp.106-110. [15] Stocker M, Seaborne A, Bernstein A, Kiefer C, Reynolds D. SPARQL basic graph pattern optimization using selectivity estimation. In Proc. the 17th International Conference on World Wide Web, April 2008, pp.595-604. DOI:10.1145/1367497.1367578. [16] Hogenboom A, Milea V, Frasincar F, Kaymak U. RCQ-GA:RDF chain query optimization using genetic algorithms. In Proc. the 10th International Conference on Electronic Commerce and Web Technologies, September 2009, pp.181-192. DOI:10.1007/978-3-642-03964-518. [17] Tsialiamanis P, Sidirourgos L, Fundulaki I, Christophides V, Boncz P. Heuristics-based query optimization for SPARQL. In Proc. the 15th International Conference on Extending Database Technology, March 2012, pp.324-335. DOI:10.1145/2247596.2247635. [18] Meimaris M, Papastefanatos G. Distance-based triple reordering for SPARQL query optimization. In Proc. the 33rd International Conference on Data Engineering, April 2017, pp.1559-1562. DOI:10.1109/icde.2017.227. [19] Wang X, Tiropanis T, Davis H C. Evaluating graph traversal algorithms for distributed SPARQL query optimization. In Proc. the 2011 Joint International Semantic Technology Conference, December 2011, pp.210-225. DOI:10.1007/978-3-642-29923-014. [20] Chawla T, Singh G, Pilli E S. A shortest path approach to SPARQL chain query optimization. In Proc. the 2017 Advances in Computing, Communications and Informatics, September 2017, pp.1778-1778. DOI:10.1109/icacci.2017.8126102. [21] Ramalingam G, Dhandapani S. A novel adaptive Cuckoo search for optimal query plan generation. The Scientifi World Journal, 2014, 2014:Article No. 727658. DOI:10.1155/2014/727658. [22] Ramalingam G, Dhandapani S. A hybrid batcs algorithm to generate optimal query plan. Int. Arab J. Inf. Technol., 2018, 15(3):353-359. [23] Hogenboom A, Niewenhuijse E, Jansen M, Frasincar F, Vandic D. RDF chain query optimization in a distributed environment. In Proc. the 30th Annual ACM Symposium on Applied Computing, April 2015, pp.353-359. DOI:10.1145/2695664.2695711. [24] Gubichev A, Neumann T. Exploiting the query structure for efficient join ordering in SPARQL queries. In Proc. the 17th International Conference on Extending Database Technology, March 2014, pp.439-450. [25] Vandervalk B P, McCarthy E L, Wilkinson M D. Optimization of distributed SPARQL queries using Edmonds' algorithm and Prim's algorithm. In Proc. the 2009 International Conference on Computational Science and Engineering, August 2009, pp.330-337. DOI:10.1109/cse.2009.144. [26] Liu C, Wang H, Yu Y, Xu L. Towards efficient SPARQL query processing on RDF data. Tsinghua Science and Technology, 2010, 15(6):613-622. DOI:10.1016/s1007-0214(10)70108-5. [27] Saharan S, Lather J S, Radhakrishnan R. Optimization of different queries using optimization algorithm (DE). International Journal of Computer Network and Information Security, 2018, 10(3):52-59. DOI:10.5815/ijcnis.2018.03.06. [28] Saharan S, Lather J S, Radhakrishnan R. Specific queries optimization using Jaya approach. International Journal of Modern Education and Computer Science, 2018, 10(3):38-46. DOI:10.5815/ijmecs.2018.03.05. [29] Rao R. Jaya:A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 2016, 7(1):19-34. DOI:10.5267/j.ijiec.2015.8.004. [30] Ramalingam G, Dhandapani S. A hybrid nature inspired algorithm for generating optimal query plan. World Academy of Science, Engineering and Technology, International Journal of Computer and Information Engineering, 2014, 8(8):1519-1524. [31] Zhang W E, Sheng Q Z, Qin Y, Taylor K, Yao L. Learningbased SPARQL query performance modeling and prediction.World Wide Web, 2018, 21(4):1015-1035. DOI:10.1007/s11280-017-0498-1. [32] Li J, König A C, Narasayya V, Chaudhuri S. Robust estimation of resource consumption for SQL queries using statistical techniques. Proceedings of the VLDB Endowment, 2012, 5(11):1555-1566. DOI:10.14778/2350229.2350269. [33] Wu W, Chi Y, Zhu S, Tatemura J, Hacigümüs H, Naughton J F. Predicting query execution time:Are optimizer cost models really unusable? In Proc. the 29th IEEE International Conference on Data Engineering, April 2013, pp.1081-1092. DOI:10.1109/icde.2013.6544899. [34] Neumann T, Weikum G. RDF-3X:A RISC-style engine for RDF. Proceedings of the VLDB Endowment, 2008, 1(1):647-659. DOI:10.14778/1453856.1453927. [35] Akdere M, Çetintemel U, Riondato M, Upfal E, Zdonik S B. Learning-based query performance modeling and prediction. In Proc. the 28th International Conference on Data Engineering, April 2012, pp.390-401. DOI:10.1109/icde.2012.64. [36] Tozer S, Brecht T, Aboulnaga A. Q-Cop:Avoiding bad query mixes to minimize client timeouts under heavy loads. In Proc. the 26th International Conference on Data Engineering, March 2010, pp.397-408. DOI:10.1109/icde.2010.5447850. [37] Frosini R, Cali A, Poulovassilis A, Wood P T. Flexible query processing for SPARQL. Semantic Web, 2017, 8(4):533-563. [38] Fletcher G H L. An algebra for basic graph patterns. In Proc. the Workshop on Logic in Databases, May 2008. [39] Carroll J J, Dickinson I, Dollin C, Reynolds D, Seaborne A, Wilkinson K. Jena:Implementing the semantic web recommendations. In Proc. the 13th International Conference on World Wide Web, May 2004, pp.74-83. DOI:10.1145/1013367.1013381. [40] Steinbrunn M, Moerkotte G, Kemper A. Heuristic and randomized optimization for the join ordering problem. The International Journal on Very Large Data Bases, 1997, 6(3):191-208. DOI:10.1007/s007780050040. [41] Guo Y, Pan Z, Heflin J. LUBM:A benchmark for OWL knowledge base systems. Journal of Web Semantics, 2005, 3(2/3):158-182. DOI:10.1016/j.websem.2005.06.005. [42] Kulkarni P. Distributed SPARQL query engine using MapReduce[Master Thesis]. University of Edinburgh School of Informatics, 2010. [43] Dorigo M, Stutzle T. Ant Colony Optimization. MIT Press, 2004. [44] Dorigo M, Maniezzo V, Colorni A. Positive feedback as a search strategy. Technical Report, Politecnicodi Milano, 1991. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.6342&rep=rep1&type=pdf, March 2020. [45] Dorigo M, Maniezzo V, Colorni A. Ant system:Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1):29-41. DOI:10.1109/3477.484436. |
[1] | Hong Fang, Bo Zhao, Xiao-Wang Zhang, Xuan-Xing Yang. 大规模RDF流数据处理的统一框架[J]. 计算机科学技术学报, 2019, 34(4): 762-774. |
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |