计算机科学技术学报 ›› 2022,Vol. 37 ›› Issue (1): 266-276.doi: 10.1007/s11390-021-0583-x

所属专题: Computer Networks and Distributed Computing

• • 上一篇    

一种基于区块链协议的恶意价格歧视解决方案

  

  • 收稿日期:2020-05-06 修回日期:2021-12-01 接受日期:2021-12-29 出版日期:2022-01-28 发布日期:2022-01-28

A Blockchain-Based Protocol for Malicious Price Discrimination

Li-De Xue1 (薛立德), Ya-Jun Liu2 (刘亚军), Wei Yang1,* (杨威), Member, IEEE, Wei-Lin Chen1 (陈蔚林), and Liu-Sheng Huang1 (黄刘生), Member, IEEE        

  1. 1School of Computer Science and Technology, University of Science and Technology of China, Hefei 230000, China
    2Information Department, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
  • Received:2020-05-06 Revised:2021-12-01 Accepted:2021-12-29 Online:2022-01-28 Published:2022-01-28
  • Contact: Wei Yang E-mail:qubit@ustc.edu.cn
  • About author:Wei Yang is an associate professor in School of Computer Science and Technology at the University of Science and Technology of China, Hefei. In 2007, he received his Ph.D. degree in computer science from University of Science and Technology of China, Hefei, and was awarded the Dean's Prize of Chinese Academy of Sciences. His research interests include information security, quantum information and wireless networks. He has authored or co-authored over 120 technical papers in major international journals and conferences. In 2014, he got the Natural Science Award of Ministry of Education of People's Republic of China. In 2016, he won the Best Paper Award at ACM UbiComp.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China under Grant No.62172385, and the Anhui Initiative in Quantum Information Technologies under Grant No.AHY150300.

1、研究背景
价格歧视(price discrimination)实质上是一种价格差异,通常指商品或服务的提供者在向不同的买方提供相同等级、相同质量的商品或服务时,在买方之间实行不同的销售价格或收费标准。卖方没有正当理由,就同一种商品或者服务,对若干买方实行不同的售价,则构成价格歧视行为。中国的《价格法》中明确规定:价格歧视为不正当价格行为,并规定了比较严厉的惩罚措施。但如今,价格歧视的现象仍屡见不鲜,主要面临的困境有:价格歧视界定的困难,价格歧视的福利结果具有不确定性,多维度的价格歧视等。 区块链(blockchain)从本质上来说是一个共享数据库,存储于其中的数据或信息,具有“不可伪造”“全程留痕”“可以追溯”“公开透明”“集体维护”等特征,其被广泛用于去中心化的缺乏信用的场景中。
2、目的
我们的研究目标是通过改进的区块链共识技术开发一款去中心化的价格比较系统,来帮助用户(买方)规避价格歧视,并且获得最真实、有效的价格信息。
3、方法
我们给出了关于价格歧视的数学定义并重新设计了原始的区块链协议使其适用于价格共享的应用场景。文中使用的数据结构被称为“价格链(PriceChain)”,其是一种类似DAG区块链的结构,这是由于系统并不受传统区块链分叉的影响。价格链可以保证链上价格信息的安全性、透明性及不可篡改性。此外,我们使用“滑动窗口”限制价格链上价格信息的时效性,从而实现用户能够及时得到及时、准确的价格信息。配合对于节点接受信息的检测算法,整体系统可以有效地确保价格信息的透明性和动态同步。
4、结果
我们在100个分布式模拟节点上实施并评估了协议的原型,结果表明我们的协议在及时性,搜索成本和真实性方面都优于现有的价格比较网站。价格链不仅可以发现商家的价格歧视,还可以记录下来,这增加了商家价格歧视和其他行为的成本。此外,我们的协议还可以保证每个用户都能以很高的概率获得最优价格。
5、结论
我们提出了第一个基于区块链技术的价格歧视问题的去中心化解决方案。它解决了用户之间价格不透明以及价格歧视问题。我们的协议还保证了价格歧视共识的去中心化,价格透明,一致性和及时性。具体来说,所有用户节点都将对任何的有效价格和任何的价格歧视达成共识(尽管可能存在一定的延迟)。此外,我们还将继续研究整个去中心化价格歧视解决方案的生态系统,例如,结合机器学习技术对商品进行识别和归类使得我们的协议可以在更大的范围内进行价格对比,为用户提供更详细和精准的价格信息。

关键词: 区块链, 数字经济, 分布式应用, 价格歧视, 价格透明

Abstract: Serious price discrimination emerges with the development of big data and mobile networks, which harms the interests of consumers. To solve this problem, we propose a blockchain-based price consensus protocol to solve the malicious price discrimination faced by consumers. We give a mathematical definition of price discrimination, which requires the system to satisfy consistency and timeliness. The distributed blockchain can make the different pricing of merchants transparent to consumers, thus satisfying the consistency. The aging window mechanism of our protocol ensures that there is no disagreement between any node on the consensus on price or price discrimination within a fixed period, which meets the timeliness. Moreover, we evaluate its performance through a prototype implementation and experiments with up to 100 user nodes. Experimental results show that our protocol achieves all the expected goals like price transparency, consistency, and timeliness, and it additionally guarantees the consensus of the optimal price with a high probability.

Key words: blockchain, digital economy, distributed application, price discrimination, price transparency

[1] Laffont J J, Rey P, Tirole J. Network competition: II. Price discrimination. The RAND Journal of Economics, 1998, 29(1): 38-56. DOI: 10.2307/2555815.
[2] Varian H R. Price discrimination. In Handbook of Industrial Organization, Schmalensee R, Willig R (eds.), North Halland, 1989, pp.597-654.
[3] Pigou A C. Discriminating monopoly. In The Economics of Welfare, Pigou A C, Aslanbeigui N (eds.), Routledge, 2002, pp.275-289. DOI: 10.4324/9781351304368.
[4] Belleflamme P, Peitz M. Group pricing and personalized pricing. In Industrial Organization: Markets and Strategies (2nd edition), Belleflamme P, Peitz M (eds.), Cambridge University Press, 2015, pp.197-219. DOI: 10.1017/CBO9781107707139.014.
[5] Rayna T, Darlington J, Striukova L. Pricing music using personal data: Mutually advantageous first-degree price discrimination. Electronic Markets, 2015, 25(2): 139-154. DOI: 10.1007/s12525-014-0165-7.
[6] Shiller B R. First degree price discrimination using big data. Technical Report, Department of Economics and International Business School, Brandeis University, 2014. https://www.brandeis.edu/economics/RePEc/brd/doc/Brandeis-WP58R2.pdf, Dec. 2020.
[7] Shiller B R. Personalized price discrimination using big data. Technical Report, Department of Economics and International Business School, Brandeis University, 2016, https://www.brandeis.edu/economics/RePEc/brd/doc/Br-andeis-WP108.pdf, Dec. 2020.
[8] Kshetri N. Big data's impact on privacy, security and consumer welfare. Telecommunications Policy, 2014, 38(11): 1134-1145. DOI: 10.1016/j.telpol.2014.10.002.
[9] Zhao Z. Big data price discrimination is repeated, why do ``ctrips'' choose to do evil? Business School, 2019, 177(12): 60-62. (in Chinese)
[10] Woodcock R A. Big data, price discrimination, and antitrust. Hastings Law Journal, 2017, 68(6): 1371-1420. DOI: 10.2139/ssrn.2817523.
[11] Steppe R. Online price discrimination and personal data: A general data protection regulation perspective. Computer Law & Security Review, 2017, 33(6): 768-785. DOI: 10.1016/j.clsr.2017.05.008.
[12] Varian H R. Price discrimination and social welfare. The American Economic Review, 1985, 75(4): 870-875.
[13] Adachi T. Third-degree price discrimination, consumption externalities and social welfare. Economica, 2005, 72(285): 171-178. DOI: 10.1111/j.0013-0427.2005.00407.x.
[14] Yoshida Y. Third-degree price discrimination in input markets: Output and welfare. American Economic Review, 2000, 90(1): 240-246. DOI: 10.1257/aer.90.1.240.
[15] Tirole J. The Theory of Industrial Organization (1st edition). MIT Press Books, 1988.
[16] Inderst R, Valletti T M. Buyer power and the ``waterbed effect''. The Journal of Industrial Economics, 2011, 59(1): 1-20. DOI: 10.1111/j.1467-6451.2011.00443.x.
[17] Kahneman D, Knetsch J L, Thaler R. Fairness as a constraint on profit seeking: Entitlements in the market. The American Economic Review, 1986, 76(4): 728-741.
[18] Baye M R, Morgan J, Scholten P. Price dispersion in the small and in the large: Evidence from an internet price comparison site. The Journal of Industrial Economics, 2004, 52(4): 463-496, DOI: 10.1111/j.0022-1821.2004.00236.x.
[19] Thomas R G. Non-risk price discrimination in insurance: Market outcomes and public policy. The Geneva Papers on Risk and Insurance---Issues and Practice, 2012, 37(1): 27-46. DOI: 10.1057/gpp.2011.32.
[20] Marks M, Marks J. Bidding method for Internet/wireless advertising and priority ranking in search results. https://www.freepatentsonline.com/20010051911.pdf, Dec. 2020.
[21] Jansen B J, Schuster S. Bidding on the buying funnel for sponsored search and keyword advertising. Journal of Electronic Commerce Research, 2011, 12(1): 1-18.
[22] Ellison G, Ellison S F. Search, obfuscation, and price elasticities on the Internet. Econometrica, 2010, 77(2): 427-452. DOI: 10.3982/ECTA5708.
[23] Garay J, Kiayias A, Leonardos N. The bitcoin backbone protocol with chains of variable difficulty. In Proc. the 37th Annual International Cryptology Conference, August 2017, pp.291-323. DOI: 10.1007/978-3-319-63688-7-10.
[24] Huckle S, Bhattacharya R, White M, Beloff N. Internet of things, blockchain and shared economy applications. Procedia Computer Science, 2016, 98: pp.461-466. DOI: 10.1016/j.procs.2016.09.074.
[25] Christidis K, Devetsikiotis M. Blockchains and smart contracts for the Internet of Things. IEEE Access, 2016, 4: 2292-2303. DOI: 10.1109/ACCESS.2016.2566339.
[26] Kshetri N. Can blockchain strengthen the Internet of Things? IEEE IT Professional, 2017, 19(4): 68-72. DOI: 10.1109/MITP.2017.3051335.
[27] Conoscenti M, Vetrò A, De Martin J C D. Blockchain for the Internet of Things: A systematic literature review. In Proc. the 13th IEEE/ACS International Conference of Computer Systems and Applications, November 29--December 2, 2016. DOI: 10.1109/AICCSA.2016.7945805.
[28] Dorri A, Kanhere S S, Jurdak R, Gauravaram P. Blockchain for IoT security and privacy: The case study of a smart home. In Proc. the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), March 2017, pp.618-623. DOI: 0.1109/PERCOMW.2017.7917634.
[29] Sharma V. An energy-efficient transaction model for the blockchain-enabled Internet of Vehicles (IoV). IEEE Communications Letters, 2019, 23(2): 246-249. DOI: 10.1109/LCOMM.2018.2883629.
[30] Liu H, Zhang Y, Yang T. Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Network, 2018, 32(3): 78-83. DOI: 10.1109/MNET.2018.1700344.
[31] Jiang T, Fang H, Wang H. Blockchain-based Internet of Vehicles: Distributed network architecture and performance analysis. IEEE Internet of Things Journal, 2019, 6(3): 4640-4649. DOI: 10.1109/JIOT.2018.2874398.
[32] Kang J, Xiong Z, Niyato D, Ye D, Kim D I, Zhao J. Toward secure blockchain-enabled Internet of Vehicles: Optimizing consensus management using reputation and contract theory. IEEE Trans. Vehicular Technology, 2019, 68(3): 2906-2920. DOI: 10.1109/TVT.2019.2894944.
[33] Weng J, Weng J, Li M, Zhang Y, Luo W. DeepChain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Transactions on Dependable and Secure Computing, 2018, 18(5): 2438-2455. DOI: 10.1109/TDSC.2019.2952332.
[34] Cheng K, Fan T, Jin Y, Liu Y, Chen T, Yang Q. Secure-boost: A lossless federated learning framework. arXiv:1901.08755, 2019. http://arxiv.org/abs/1901.08755, Dec. 2020.
[35] Zhuo H H, Feng W, Xu Q, Yang Q, Lin Y. Federated reinforcement learning. arXiv:1901.08277, 2019. http://arxiv.org/abs/1901.08277, Dec. 2020.
[36] Sompolinsky Y, Zohar A. PHANTOM: A scalable blockDAG protocol. http://eprint.iacr.org/2018/104, Dec. 2020.
[37] Xiao S, Wang X A, Wang H. Large-scale electronic voting based on conflux consensus mechanism. In Proc. the 13th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, July 2019, pp.291-299. DOI: 10.1007/978-3-030-22263-5-28.
[38] Andrychowicz M, Dziembowski S. PoW-based distributed cryptography with no trusted setup. In Proc. the 35th Annual Cryptology Conference, August 2015, pp.379-399. DOI: 10.1007/978-3-662-48000-7-19.
[39] Gilad Y, Hemo R, Micali S et al. Algorand: Scaling Byzantine agreements for cryptocurrencies. In Proc. the 26th Symposium on Operating Systems Principles, October 2017, pp.51-68. DOI: 10.1145/3132747.3132757.
[40] Lamport L, Shostak R, Pease M. The Byzantine generals problem. ACM Trans. Programming Languages and Systems, 1982, 4(3): 382-401. DOI: 10.1145/357172.357176.
[41] Eyal I, Gencer A E, Sirer E G et al. Bitcoin-NG: A scalable blockchain protocol. In Proc. the 13th USENIX Symposium on Networked Systems Design and Implementation, March 2016, pp.45-59.
[42] Kogias E K, Jovanovic P, Gailly N et al. Enhancing bitcoin security and performance with strong consistency via collective signing. In Proc. the 25th USENIX Security Symposium, August 2016, pp.279-296.
[43] Schossmaier K, Schmid U, Horauer M, Loy D. Specification and implementation of the universal time coordinated synchronization unit (UTCSU). Real-Time Systems, 1997, 12(3): 295-327. DOI: 10.1023/A:1007953214631.
[44] Schmid U. Synchronized universal time coordinated for distributed real-time systems. Control Engineering Practice, 1995, 3(6): 877-884. DOI: 10.1016/0967-0661(95)00073-4.
[1] Da-Yu Jia, Jun-Chang Xin, Zhi-Qiong Wang, Han Lei, Guo-Ren Wang. SE-Chain:一种支持可扩展存储和高效查询的区块链模型[J]. 计算机科学技术学报, 2021, 36(3): 693-706.
[2] Zhi-Guo Wan, Robert H. Deng, David Lee, Ying Li. MicroBTC: Efficient, Flexible and Fair Micropayment for Bitcoin Using Hash Chains[J]. 计算机科学技术学报, 2019, 34(2): 403-415.
[3] Rui Yuan, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, Jan Xie. ShadowEth:公有区块链上的私有智能合约[J]. , 2018, 33(3): 542-556.
[4] Bao-Kun Zheng, Lie-Huang Zhu, Meng Shen, Feng Gao, Chuan Zhang, Yan-Dong Li, Jin. 基于区块链的可扩展和隐私保护的数据共享[J]. , 2018, 33(3): 557-567.
[5] Mingming Wang, Qianhong Wu, Bo Qin, Qin Wang, Jianwei Liu, Zhenyu Guan. 基于比特币网络的轻量级电子证据保存系统[J]. , 2018, 33(3): 568-586.
[6] Zhimin Gao, Lei Xu, Lin Chen, Xi Zhao, Yang Lu, Weidong Shi. CoC:基于分布式账簿技术的供应链管理系统[J]. , 2018, 33(2): 237-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闵应骅;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[2] 孙永强; 陆汝占; 黄小戎;. Termination Preserving Problem in the Transformation of Applicative Programs[J]. , 1987, 2(3): 191 -201 .
[3] 史维更; StephenY.H.Su;. An Online Diagnosable Fault-Tolerant Redundancy System[J]. , 1987, 2(4): 310 -321 .
[4] 冯玉琳;. Hierarchical Protocol Analysis by Temporal Logic[J]. , 1988, 3(1): 56 -69 .
[5] 姚荣; 康泰; 陈廷槐;. Algorithms for the Determination of Cutsets in a Hypergraph[J]. , 1990, 5(1): 41 -46 .
[6] 朱明远;. Two Congruent Semantics for Prolog with CUT[J]. , 1990, 5(1): 82 -91 .
[7] 徐洁; 李庆南; 黄世泽; 徐江峰;. DFTSNA:A Distributed Fault-Tolerant Shipboard System[J]. , 1990, 5(2): 109 -116 .
[8] 李锦涛; 闵应骅;. Product-Oriented Test-Pattern Generation for Programmable Logic Arrays[J]. , 1990, 5(2): 164 -174 .
[9] 沈理;. Testability Analysis at Switch Level for CMOS Circuits[J]. , 1990, 5(2): 197 -202 .
[10] 韩建超; 史忠植;. Formalizing Default Reasoning[J]. , 1990, 5(4): 374 -378 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: