计算机科学技术学报 ›› 2022,Vol. 37 ›› Issue (3): 561-583.doi: 10.1007/s11390-022-2266-7

所属专题: 综述 Artificial Intelligence and Pattern Recognition Computer Graphics and Multimedia

• • 上一篇    下一篇

重定向行走技术综述:分类、方法和未来方向

  

  • 收稿日期:2022-02-24 修回日期:2022-04-27 接受日期:2022-05-18 出版日期:2022-05-30 发布日期:2022-05-30

A Comprehensive Review of Redirected Walking Techniques: Taxonomy, Methods, and Future Directions

Yi-Jun Li1 (李奕君), Student Member, IEEE, Frank Steinicke2, Member, ACM, IEEE, and Miao Wang1,3,* (汪淼), Senior Member, CCF, Member, ACM, IEEE        

  1. 1State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100191, China
    2Department of Informatics, Universität Hamburg, Hamburg 20146, Germany
    3Peng Cheng Laboratory, Shenzhen 518055, China
  • Received:2022-02-24 Revised:2022-04-27 Accepted:2022-05-18 Online:2022-05-30 Published:2022-05-30
  • Contact: Miao Wang E-mail:miaow@buaa.edu.cn
  • About author:Miao Wang is an associate professor at Beihang University, Beijing. His research interests include virtual reality, computer graphics and visual computing. During 2016--2018, he did postdoc research in visual computing at Tsinghua University, Beijing. He received his Ph.D. degree from Tsinghua University, Beijing, in 2016 and his Bachelor's degree in Xidian University, Xi'an, in 2011. He serves as program committee members of IEEE VR and ISMAR conferences.
  • Supported by:
    This paper was supported by the National Natural Science Foundation of China under Grant Nos. 61902012 and 61932003. Frank Steinicke was supported by funds from the BMBF, BMWi, DFG, and EU.

虚拟现实(Virtual reality,VR)允许用户探索和体验计算机模拟的虚拟环境,让VR用户沉浸在完全人造的虚拟世界中,与任意虚拟对象进行交互。然而,有限的物理跟踪空间通常限制了大型虚拟空间的探索,虚拟现实用户必须使用特殊的移动技术从一个位置移动到另一个位置。在这些技术中,重定向行走(RDW)是基于近乎自然的步行体验来解决问题的最自然的运动技术之一。RDW技术的核心思想是在虚拟路径上不知不觉地引导用户,虚拟路径可能与他们在现实世界中实际行走的路径不同。以类似的方式,一些RDW技术会不知不觉地改变虚拟环境的结构和布局,使其适合跟踪空间。 在这篇综述中,我们首先介绍了现有RDW工作的分类。基于这种分类法,我们详细比较和分析了现有方法的贡献和不足。最后,我们讨论了未来可能的研究方向,例如人工智能与这一领域的结合将是高效和富有前景的。

关键词: 虚拟现实, 移动, 重定向行走

Abstract: Virtual reality (VR) allows users to explore and experience a computer-simulated virtual environment so that VR users can be immersed in a totally artificial virtual world and interact with arbitrary virtual objects. However, the limited physical tracking space usually restricts the exploration of large virtual spaces, and VR users have to use special locomotion techniques to move from one location to another. Among these techniques, redirected walking (RDW) is one of the most natural locomotion techniques to solve the problem based on near-natural walking experiences. The core idea of the RDW technique is to imperceptibly guide users on virtual paths, which might vary from the paths they physically walk in the real world. In a similar way, some RDW algorithms imperceptibly change the structure and layout of the virtual environment such that the virtual environment fits into the tracking space. In this survey, we first present a taxonomy of existing RDW work. Based on this taxonomy, we compare and analyze both contributions and shortcomings of the existing methods in detail, and find view manipulation methods offer satisfactory visual effect but the experience can be interrupted when users reach the physical boundaries, while virtual environment manipulation methods can provide users with consistent movement but have limited application scenarios. Finally, we discuss possible future research directions, indicating combining artificial intelligence with this area will be effective and intriguing.

Key words: virtual reality, locomotion, redirected walking

[1] Usoh M, Arthur K, Whitton M C, Bastos R, Steed A, Slater M, Brooks Jr F P. Walking > walking-in-place > flying, in virtual environments. In Proc. the 26th Annual Conference on Computer Graphics and Interactive Techniques, August 1999, pp.359-364. DOI: 10.1145/311535.311589.

[2] Multon F, Olivier A H. Biomechanics of walking in real world: Naturalness we wish to reach in virtual reality. In Human Walking in Virtual Environments: Perception, Technology and Applications, Steinicke F, Visell Y, Campos J, Lécuyer A (eds.), Springer, 2013, pp.55-77. DOI: 10.1007/978-1-4419-8432-6.

[3] Ruddle R A, Lessels S. The benefits of using a walking interface to navigate virtual environments. ACM Transactions on Computer-Human Interaction, 2009, 16(1): Article No. 5. DOI: 10.1145/1502800.1502805.

[4] Steinicke F. Being Really Virtual. Springer, 2016.

[5] Slater M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1535): 3549-3557. DOI: 10.1098/rstb.2009.0138.

[6] Steinicke F, Bruder G. A self-experimentation report about long-term use of fully-immersive technology. In Proc. the 2nd ACM Symposium on Spatial User Interaction, Oct. 2014, pp.66-69. DOI: 10.1145/2659766.2659767.

[7] Kelly J W, Ostrander A G, Lim A F, Cherep L A, Gilbert S B. Teleporting through virtual environments: Effects of path scale and environment scale on spatial updating. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(5): 1841-1850. DOI: 10.1109/TVCG.2020.2973051.

[8] Buttussi F, Chittaro L. Locomotion in place in virtual reality: A comparative evaluation of joystick, teleport, and leaning. IEEE Transactions on Visualization and Computer Graphics, 27(1): 125-136. DOI: 10.1109/TVCG.2019.2928304.

[9] Langbehn E, Lubos P, Steinicke F. Evaluation of locomotion techniques for room-scale VR: Joystick, teleportation, and redirected walking. In Proc. the Virtual Reality International Conference—Laval Virtual, April 2018, Article No. 4. DOI: 10.1145/3234253.3234291.

[10] Hanson S, Paris R A, Adams H A, Bodenheimer B. Improving walking in place methods with individualization and deep networks. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2019, pp.367-376. DOI: 10.1109/VR.2019.8797751.

[11] Nilsson N C, Serafin S, Laursen M H, Pedersen K S, Sikström E, Nordahl R. Tapping-in-place: Increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In Proc. the 2013 IEEE Symposium on 3D User Interfaces, March 2013, pp.31-38. DOI: 10.1109/3DUI.2013.6550193.

[12] Wendt J D, Whitton M C, Brooks F P. GUD WIP: Gait-understanding-driven walking-in-place. In Proc. the 2010 IEEE Virtual Reality Conference, March 2010, pp.51-58. DOI: 10.1109/VR.2010.5444812.

[13] Razzaque S, Kohn Z, Whitton M C. Redirected walking. In Proc. the 22nd Annual Conference of the European Association for Computer Graphics, Sept. 2001. DOI: 10.2312/egs.20011036.

[14] Razzaque S. Redirected walking [Ph.D. Thesis]. University of North Carolina at Chapel Hill, 2005.

[15] Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17-27. DOI: 10.1109/TVCG.2009.62.

[16] Sun Q, Patney A, Wei L Y, Shapira O, Lu J, Asente P, Zhu S, McGuire M, Luebke D, Kaufman A. Towards virtual reality infinite walking: Dynamic saccadic redirection. ACM Transactions on Graphics, 2018, 37(4): Article No. 67. DOI: 10.1145/3197517.3201294.

[17] Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Analyses of human sensitivity to redirected walking. In Proc. the 2008 ACM Symposium on Virtual Reality Software and Technology, Oct. 2008, pp.149-156. DOI: 10.1145/1450579.1450611.

[18] Nilsson N C, Peck T, Bruder G, Hodgson E, Serafin S, Whitton M, Steinicke F, Rosenberg E S. 15 years of research on redirected walking in immersive virtual environments. IEEE Computer Graphics and Applications, 2018, 38(2): 44-56. DOI: 10.1109/MCG.2018.111125628.

[19] Hodgson E, Bachmann E. Comparing four approaches to generalized redirected walking: Simulation and live user data. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(4): 634-643. DOI: 10.1109/TVCG.2013.28.

[20] Bachmann E R, Hodgson E, Hoffbauer C, Messinger J. Multi-user redirected walking and resetting using artificial potential fields. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2022-2031. DOI: 10.1109/TVCG.2019.2898764.

[21] Dong T, Chen X, Song Y, Ying W, Fan J. Dynamic artificial potential fields for multi-user redirected walking. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2020, pp.146-154. DOI: 10.1109/VR46266.2020.00033.

[22] Zmuda M A, Wonser J L, Bachmann E R, Hodgson E. Optimizing constrained-environment redirected walking instructions using search techniques. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(11): 1872-1884. DOI: 10.1109/TVCG.2013.88.

[23] Lee D Y, Cho Y H, Lee I K. Real-time optimal planning for redirected walking using Deep Q-Learning. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2019, pp.63-71. DOI: 10.1109/VR.2019.8798121.

[24] Strauss R R, Ramanujan R, Becker A, Peck T C. A steering algorithm for redirected walking using reinforcement learning. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(5): 1955-1963. DOI: 10.1109/TVCG.2020.2973060.

[25] Williams B, Narasimham G, Rump B, McNamara T P, Carr T H, Rieser J, Bodenheimer B. Exploring large virtual environments with an HMD when physical space is limited. In Proc. the 4th Symposium on Applied Perception in Graphics and Visualization, July 2007, pp.41-48. DOI: 10.1145/1272582.1272590.

[26] Suma E A, Clark S, Krum D, Finkelstein S, Bolas M, Warte Z. Leveraging change blindness for redirection in virtual environments. In Proc. the 2011 IEEE Virtual Reality Conference, March 2011, pp.159-166. DOI: 10.1109/VR.2011.5759455.

[27] Suma E A, Lipps Z, Finkelstein S, Krum D M, Bolas M. Impossible spaces: Maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 555-564. DOI: 10.1109/TVCG.2012.47.

[28] Vasylevska K, Kaufmann H, Bolas M, Suma E A. Flexible spaces: Dynamic layout generation for infinite walking in virtual environments. In Proc. the 2013 IEEE Symposium on 3D User Interfaces, March 2013, pp. 39-42. DOI: 10.1109/3DUI.2013.6550194.

[29] Sun Q, Wei L Y, Kaufman A. Mapping virtual and physical reality. ACM Transactions on Graphics, 2016, 35(4): Article No. 64. DOI: 10.1145/2897824.2925883.

[30] Dong Z C, Fu X M, Zhang C, Wu K, Liu L. Smooth assembled mappings for large-scale real walking. ACM Transactions on Graphics, 2017, 36(6): Article No. 211. DOI: 10.1145/3130800.3130893.

[31] Dong Z C, Fu X M, Yang Z, Liu L. Redirected smooth mappings for multiuser real walking in virtual reality. ACM Transactions on Graphics, 2019, 38(5): Article No. 149. DOI: 10.1145/3345554.

[32] Cao A, Wang L, Liu Y, Popescu V. Feature guided path redirection for VR navigation. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2020, pp.137-145. DOI: 10.1109/VR46266.2020.00032.

[33] Messinger J, Hodgson E, Bachmann E R. Effects of tracking area shape and size on artificial potential field redirected walking. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2019, pp.72-80. DOI: 10.1109/VR.2019.8797818.

[34] Lee D Y, Cho Y H, Min D H, Lee I K. Optimal planning for redirected walking based on reinforcement learning in multi-user environment with irregularly shaped physical space. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2020, pp.155-163. DOI: 10.1109/VR46266.2020.00034.

[35] Chen H, Chen S, Rosenberg E S. Redirected walking strategies in irregularly shaped and dynamic physical environments. In Proc. the 25th IEEE Conference on Virtual Reality and 3D User Interfaces, March 2018, pp.523-524. DOI: 10.1109/VR.2018.8446563.

[36] Thomas J, Rosenberg E S. A general reactive algorithm for redirected walking using artificial potential functions. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2019, pp.56-62. DOI: 10.1109/VR.2019.8797983.

[37] Kohli L, Burns E, Miller D, Fuchs H. Combining passive haptics with redirected walking. In Proc. the 2005 International Conference on Augmented Tele-Existence, Dec. 2005, pp.253-254. DOI: 10.1145/1152399.1152451.

[38] Chen Z Y, Li Y J, Wang M, Steinicke F, Zhao Q. A reinforcement learning approach to redirected walking with passive haptic feedback. In Proc. the 2021 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2021, pp.184-192. DOI: 10.1109/ISMAR52148.2021.00033.

[39] Wang L, Zhao Z, Yang X, Bai H, Barde A, Billinghurst M. A constrained path redirection for passive haptics. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, March 2020, pp.651-652. DOI: 10.1109/VRW50115.2020.00176.

[40] Thomas J, Pospick C H, Rosenberg E S. Towards physically interactive virtual environments: Reactive alignment with redirected walking. In Proc. the 26th ACM Symposium on Virtual Reality Software and Technology, Nov. 2020, Article No. 10. DOI: 10.1145/3385956.3418966.

[41] Steinicke F, Bruder G, Kohli L, Jerald J, Hinrichs K. Taxonomy and implementation of redirection techniques for ubiquitous passive haptic feedback. In Proc. the 2008 International Conference on Cyberworlds, Sept. 2008, pp.217-223. DOI: 10.1109/CW.2008.53.

[42] Azmandian M, Grechkin T, Bolas M, Suma E. The redirected walking toolkit: A unified development platform for exploring large virtual environments. In Proc. the 2nd IEEE Workshop on Everyday Virtual Reality, March 2016, pp.9-14. DOI: 10.1109/WEVR.2016.7859537.

[43] Li Y J, Wang M, Steinicke F, Zhao Q. OpenRDW: A redirected walking library and benchmark with multi-user, learning-based functionalities and state-of-the-art algorithms. In Proc. the 2021 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2021, pp.21-30. DOI: 10.1109/ISMAR52148.2021.00016.

[44] Bruder G, Interrante V, Phillips L, Steinicke F. Redirecting walking and driving for natural navigation in immersive virtual environments. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 538-545. DOI: 10.1109/TVCG.2012.55.

[45] Hayashi O, Fujita K, Takashima K, Lindernan R W, Kitarnura Y. Redirected jumping: Imperceptibly manipulating jump motions in virtual reality. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2019, pp.386-394. DOI: 10.1109/VR.2019.8797989.

[46] Jung S, Borst C W, Hoermann S, Lindeman R W. Redirected jumping: Perceptual detection rates for curvature gains. In Proc. the 32nd Annual ACM Symposium on User Interface Software and Technology, Oct. 2019, pp.1085-1092. DOI: 10.1145/3332165.3347868.

[47] Matsumoto K, Langbehn E, Narumi T, Steinicke F. Detection thresholds for vertical gains in VR and drone-based telepresence systems. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2020, pp.101-107. DOI: 10.1109/VR46266.2020.00028.

[48] Suma E A, Bruder G, Steinicke F, Krum D M, Bolas M. A taxonomy for deploying redirection techniques in immersive virtual environments. In Proc. the 2012 IEEE Virtual Reality Workshops, March 2012, pp.43-46. DOI: 10.1109/VR.2012.6180877.

[49] Langbehn E, Steinicke F. Redirected walking in virtual reality. In Encyclopedia of Computer Graphics and Games, Lee N (ed.), Springer, 2019. DOI: 10.1007/978-3-319-08234-9-1.

[50] Bishop I, Abid M R. Survey of locomotion systems in virtual reality. In Proc. the 2nd International Conference on Information System and Data Mining, April 2018, pp.151-154. DOI: 10.1145/3206098.3206108.

[51] Langbehn E, Lubos P, Bruder G, Steinicke F. Bending the curve: Sensitivity to bending of curved paths and application in room-scale VR. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1389-1398. DOI: 10.1109/TVCG.2017.2657220.

[52] Cho Y H, Min D H, Huh J S, Lee S H, Yoon J S, Lee I K. Walking outside the box: Estimation of detection thresholds for non-forward steps. In Proc. the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces, March 27-April 1, 2021, pp.448-454. DOI: 10.1109/VR50410.2021.00068.

[53] Schmitz P, Hildebrandt J, Valdez A C, Kobbelt L, Ziefle M. You spin my head right round: Threshold of limited immersion for rotation gains in redirected walking. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(4): 1623-1632. DOI: 10.1109/TVCG.2018.2793671.

[54] Rietzler M, Gugenheimer J, Hirzle T, Deubzer M, Langbehn E, Rukzio E. Rethinking redirected walking: On the use of curvature gains beyond perceptual limitations and revisiting bending gains. In Proc. the 2018 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2018, pp.115-122. DOI: 10.1109/ISMAR.2018.00041.

[55] Steinicke F, Bruder G, Hinrichs K, Jerald J, Frenz H, Lappe M. Real walking through virtual environments by redirection techniques. Journal of Virtual Reality and Broadcasting, 2009, 6: Article No. 2. DOI: 10.20385/1860-2037/6.2009.2.

[56] Kim D, Shin J, Lee J, Woo W. Adjusting relative translation gains according to space size in redirected walking for mixed reality mutual space generation. In Proc. the 2021 IEEE Virtual Reality and 3D User Interfaces, March 27-April 1, 2021, pp.653-660. DOI: 10.1109/VR50410.2021.00091.

[57] Grechkin T, Thomas J, Azmandian M, Bolas M, Suma E. Revisiting detection thresholds for redirected walking: Combining translation and curvature gains. In Proc. the ACM Symposium on Applied Perception, July 2016, pp.113-120. DOI: 10.1145/2931002.2931018.

[58] Kruse L, Langbehn E, Steinicke F. I can see on my feet while walking: Sensitivity to translation gains with visible feet. In Proc. the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2018, pp.305-312. DOI: 10.1109/VR.2018.8446216.

[59] Langbehn E, Steinicke F, Lappe M, Welch G F, Bruder G. In the blink of an eye: Leveraging blink-induced suppression for imperceptible position and orientation redirection in virtual reality. ACM Transactions on Graphics, 2018, 37(4): Article No. 66. DOI: 10.1145/3197517.3201335.

[60] Zhang J, Langbehn E, Krupke D, Katzakis N, Steinicke F. Detection thresholds for rotation and translation gains in 360 video-based telepresence systems. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(4): 1671-1680. DOI: 10.1109/TVCG.2018.2793679.

[61] Williams N L, Peck T C. Estimation of rotation gain thresholds considering FOV, gender, and distractors. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(11): 3158-3168. DOI: 10.1109/TVCG.2019.2932213.

[62] Neth C T, Souman J L, Engel D, Kloos U, Bulthoff H H, Mohler B J. Velocity-dependent dynamic curvature gain for redirected walking. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(7): 1041-1052. DOI: 10.1109/TVCG.2011.275.

[63] Zhang S, Wang C, Zhang Y, Zhang F L, Pantidi N, Hu S M. Velocity guided amplification of view rotation for seated VR scene exploration. In Proc. the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, March 27-April 1, 2021, pp.504-505. DOI: 10.1109/VRW52623.2021.00134.

[64] Paludan A, Elbaek J, Mortensen M, Zobbe M, Nilsson N C, Nordahl R, Reng L, Serafin S. Disguising rotational gain for redirected walking in virtual reality: Effect of visual density. In Proc. the 2016 IEEE Virtual Reality, March 2016, pp.259-260. DOI: 10.1109/VR.2016.7504752.

[65] Schmelter T, Hernadi L, Störmer M A, Steinicke F, Hildebrand K. Interaction based redirected walking. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2021, 4(1): Article No. 9. DOI: 10.1145/3451264.

[66] Serafin S, Nilsson N C, Sikstrom E, De Goetzen A, Nordahl R. Estimation of detection thresholds for acoustic based redirected walking techniques. In Proc. the 2013 IEEE Virtual Reality, March 2013, pp.161-162. DOI: 10.1109/VR.2013.6549412.

[67] Nilsson N C, Suma E, Nordahl R, Bolas M, Serafin S. Estimation of detection thresholds for audiovisual rotation gains. In Proc. the 2016 IEEE Virtual Reality, March 2016, pp.241-242. DOI: 10.1109/VR.2016.7504743.

[68] Meyer F, Nogalski M, Fohl W. Detection thresholds in audio-visual redirected walking. In Proc. the 13th Sound and Music Computing Conference, August 31-September 3, 2016. DOI: 10.5281/zenodo.851258.

[69] Gao P, Matsumoto K, Narumi T, Hirose M. Visual-auditory redirection: Multimodal integration of incongruent visual and auditory cues for redirected walking. In Proc. the 2020 IEEE International Symposium on Mixed and Augmented Reality, Nov. 2020, pp.639-648. DOI: 10.1109/ISMAR50242.2020.00092.

[70] Sakono H, Matsumoto K, Narumi T, Kuzuoka H. Redirected walking using continuous curvature manipulation. IEEE Transactions on Visualization & Computer Graphics, 2021, 27(11): 4278-4288. DOI: 10.1109/TVCG.2021.3106501.

[71] Hutton C, Ziccardi S, Medina J, Rosenberg E S. Individualized calibration of rotation gain thresholds for redirected walking. In Proc. the 2018 International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments, Nov. 2018, pp.61-64. DOI: 10.2312/egve.20181315.

[72] Rothacher Y, Nguyen A, Lenggenhager B, Kunz A, Brugger P. Visual capture of gait during redirected walking. Scientific Reports, 2018, 8(1): Article No. 17974. DOI: 10.1038/s41598-018-36035-6.

[73] Bölling L, Stein N, Steinicke F, Lappe M. Shrinking circles: Adaptation to increased curvature gain in redirected walking. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2032-2039. DOI: 10.1109/TVCG.2019.2899228.

[74] Chen W, Ladevèze N, Hu W, Ou S, Bourdot P. Comparison between the methods of adjustment and constant stimuli for the estimation of redirection detection thresholds. In Proc. the 16th EuroVR International Conference on Virtual Reality and Augmented Reality, Oct. 2019, pp.226-245. DOI: 10.1007/978-3-030-31908-3.

[75] Congdon B J, Steed A. Sensitivity to rate of change in gains applied by redirected walking. In Proc. the 25th ACM Symposium on Virtual Reality Software and Technology, Nov. 2019, Article No. 3. DOI: 10.1145/3359996.3364277.

[76] Simeone A L, Nilsson N C, Zenner A, Speicher M, Daiber F. The space bender: Supporting natural walking via overt manipulation of the virtual environment. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2020, pp.598-606. DOI: 10.1109/VR46266.2020.00082.

[77] Interrante V, Ries B, Anderson L. Seven league boots: A new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In Proc. the 2007 IEEE Symposium on 3D User Interfaces, March 2007, Article No. 35. DOI: 10.1109/3DUI.2007.340791.

[78] Reimer D, Langbehn E, Kaufmann H, Scherzer D. The influence of full-body representation on translation and curvature gain. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, March 2020, pp.154-159. DOI: 10.1109/VRW50115.2020.00032.

[79] Nguyen A, Rothacher Y, Lenggenhager B, Brugger P, Kunz A. Effect of sense of embodiment on curvature redirected walking thresholds. In Proc. the 2020 ACM Symposium on Applied Perception, Sept. 2020, Article No. 16. DOI: 10.1145/3385955.3407932.

[80] Heeter C. Being there: The subjective experience of presence. Presence: Teleoperators & Virtual Environments, 1992, 1(2): 262-271. DOI: 10.1162/pres.1992.1.2.262.

[81] Slater M, Usoh M, Steed A. Taking steps: The influence of a walking technique on presence in virtual reality. ACM Transactions on Computer-Human Interaction, 1995, 2(3): 201-219. DOI: 10.1145/210079.210084.

[82] Lin J W, Duh H B L, Parker D E, Abi-Rached H, Furness T A. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Proc. the 2002 IEEE Virtual Reality Conference, March 2002, pp.164-171. DOI: 10.1109/VR.2002.996519.

[83] Stanney K, Salvendy G. Aftereffects and sense of presence in virtual environments: Formulation of a research and development agenda. International Journal of Human-Computer Interaction, 1998, 10(2): 135-187. DOI: 10.1207/s15327590ijhc1002.

[84] Kolasinski E M. Simulator Sickness in Virtual Environments. US Army Research Institute for the Behavioral and Social Sciences, 1995.

[85] Kennedy R S, Lane N E, Berbaum K S, Lilienthal M G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 1993, 3(3): 203-220. DOI: 10.1207/s15327108ijap0303.

[86] Bruder G, Lubos P, Steinicke F. Cognitive resource demands of redirected walking. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(4): 539-544. DOI: 10.1109/TVCG.2015.2391864.

[87] Nguyen A, Rothacher Y, Efthymiou E, Lenggenhager B, Brugger P, Imbach L, Kunz A. Effect of cognitive load on curvature redirected walking thresholds. In Proc. the 26th ACM Symposium on Virtual Reality Software and Technology, Nov. 2020, Article No. 17. DOI: 10.1145/3385956.3418950.

[88] Razzaque S, Swapp D, Slater M, Whitton M C, Steed A. Redirected walking in place. In Proc. the 8th Eurographics Workshop on Virtual Environments, May 2002, pp.123-130. DOI: 10.2312/EGVE/EGVE02/123-130.

[89] Field T, Vamplew P. Generalised algorithms for redirected walking in virtual environments. In Proc. the 2nd International Conference on Artificial Intelligence in Science and Technology, Nov. 2004, pp.58-63.

[90] Nescher T, Huang Y Y, Kunz A. Planning redirection techniques for optimal free walking experience using model predictive control. In Proc. the 2014 IEEE Symposium on 3D User Interfaces, March 2014, pp.111-118. DOI: 10.1109/3DUI.2014.6798851.

[91] Azmandian M, Yahata R, Bolas M, Suma E. An enhanced steering algorithm for redirected walking in virtual environments. In Proc. the 2014 IEEE Virtual Reality, March 29-April 2, 2014, pp.65-66. DOI: 10.1109/VR.2014.6802053.

[92] Azmandian M, Grechkin T, Bolas M, Suma E. Automated path prediction for redirected walking using navigation meshes. In Proc. the 2016 IEEE Symposium on 3D User Interfaces, March 2016, pp.63-66. DOI: 10.1109/3DUI.2016.7460032.

[93] Xie X, Lin Q, Wu H, Narasimham G, McNamara T P, Rieser J, Bodenheimer B. A system for exploring large virtual environments that combines scaled translational gain and interventions. In Proc. the 7th Symposium on Applied Perception in Graphics and Visualization, July 2010, pp.65-72. DOI: 10.1145/1836248.1836260.

[94] Yu R, Duer Z, Ogle T et al. Experiencing an invisible World War I battlefield through narrative-driven redirected walking in virtual reality. In Proc. the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2018, pp.313-319. DOI: 10.1109/VR.2018.8448288.

[95] Zhang S H, Chen C H, Fu Z, Yang Y, Hu S M. Adaptive optimization algorithm for resetting techniques in obstacle-ridden environments. IEEE Transactions on Visualization and Computer Graphics. DOI: 10.1109/TVCG.2021.3139990.

[96] Zhang S H, Chen C H, Zollmann S. One-step out-of-place resetting for redirected walking in VR. IEEE Transactions on Visualization and Computer Graphics. DOI: 10.1109/TVCG.2022.3158609.

[97] Bahill A T, Clark M R, Stark L. The main sequence, a tool for studying human eye movements. Mathematical Biosciences, 1975, 24(3/4): 191-204. DOI: 10.1016/0025-5564(75)90075-9.

[98] Bolte B, Lappe M. Subliminal reorientation and repositioning in immersive virtual environments using saccadic suppression. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(4): 545-552. DOI: 10.1109/TVCG.2015.2391851.

[99] Langbehn E, Bruder G, Steinicke F. Subliminal reorientation and repositioning in virtual reality during eye blinks. In Proc. the 2016 Symposium on Spatial User Interaction, Oct. 2016, pp.213. DOI: 10.1145/2983310.2989204.

[100] Nguyen A, Kunz A. Discrete scene rotation during blinks and its effect on redirected walking algorithms. In Proc. the 24th ACM Symposium on Virtual Reality Software and Technology, November 28-December 1, 2018, Article No. 29. DOI: 10.1145/3281505.3281515.

[101] Peck T C, Fuchs H, Whitton M C. Evaluation of reorientation techniques and distractors for walking in large virtual environments. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(3): 383-394. DOI: 10.1109/TVCG.2008.191.

[102] Peck T C, Fuchs H, Whitton M C. Improved redirection with distractors: A large-scale-real-walking locomotion interface and its effect on navigation in virtual environments. In Proc. the 2010 IEEE Virtual Reality Conference, March 2010, pp.35-38. DOI: 10.1109/VR.2010.5444816.

[103] Rewkowski N, Rungta A, Whitton M, Lin M. Evaluating the effectiveness of redirected walking with auditory distractors for navigation in virtual environments. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2019, pp.395-404. DOI: 10.1109/VR.2019.8798286.

[104] Bachmann E R, Holm J, Zmuda M A, Hodgson E. Collision prediction and prevention in a simultaneous two-user immersive virtual environment. In Proc. the 2013 IEEE Virtual Reality, March 2013, pp.89-90. DOI: 10.1109/VR.2013.6549377.

[105] Azmandian M, Grechkin T, Rosenberg E S. An evaluation of strategies for two-user redirected walking in shared physical spaces. In Proc. the 2017 IEEE Virtual Reality, March 2017, pp.91-98. DOI: 10.1109/VR.2017.7892235.

[106] Krogh B. A generalized potential field approach to obstacle avoidance control. In Proc. the 1st World Conference on Robotics Research, Aug. 1984, pp.11-22.

[107] Dong T, Shen Y, Gao T, Fan J. Dynamic density-based redirected walking towards multi-user virtual environments. In Proc. the 2021 IEEE Virtual Reality and 3D User Interfaces, March 27-April 1, 2021, pp.626-634. DOI: 10.1109/VR50410.2021.00088.

[108] Min D H, Lee D Y, Cho Y H, Lee I K. Shaking hands in virtual space: Recovery in redirected walking for direct interaction between two users. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2020, pp.164-173. DOI: 10.1109/VR46266.2020.00035.

[109] Azmandian M, Grechkin T, Bolas M T, Suma E A. Physical space requirements for redirected walking: How size and shape affect performance. In Proc. the 25th International Conference on Artificial Reality and Telexistence and 20th Eurographics Symposium on Virtual Environments, Oct. 2015, pp.93-100. DOI: 10.2312/egve.20151315.

[110] Williams N L, Bera A, Manocha D. ARC: Alignment-based redirection controller for redirected walking in complex environments. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(5): 2535-2544. DOI: 10.1109/TVCG.2021.3067781.

[111] Williams N L, Bera A, Manocha D. Redirected walking in static and dynamic scenes using visibility polygons. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(11): 4267-4277. DOI: 10.1109/TVCG.2021.3106432.

[112] Thomas J, Rosenberg E S. Reactive alignment of virtual and physical environments using redirected walking. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, March 2020, pp.317-323. DOI: 10.1109/VRW50115.2020.00071.

[113] Peck T C, Fuchs H, Whitton M C. The design and evaluation of a large-scale real-walking locomotion interface. IEEE Transactions on Visualization and Computer Graphics, 2011, 18(7): 1053-1067. DOI: 10.1109/TVCG.2011.289.

[114] Bolte B, Steinicke F, Bruder G. The jumper metaphor: An effective navigation technique for immersive display setups. In Proc. Virtual Reality International Conference, April 2011.

[115] Wolf D, Rogers K, Kunder C, Rukzio E. JumpVR: Jump-based locomotion augmentation for virtual reality. In Proc. the 2020 CHI Conference on Human Factors in Computing Systems, April 2020. DOI: 10.1145/3313831.3376243.

[116] Yoshida N, Ueno K, Naka Y, Yonezawa T. Virtual ski jump: Illusion of slide down the slope and gliding. In Proc. SIGGRAPH ASIA 2016 Posters, Nov. 2016, Article No. 4. DOI: 10.1145/3005274.3005282.

[117] Kim M, Cho S, Tran T Q, Kim S P, Kwon O, Han J. Scaled jump in gravity-reduced virtual environments. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1360-1368. DOI: 10.1109/TVCG.2017.2657139.

[118] Sasaki T, Liu K H, Hasegawa T, Hiyama A, Inami M. Virtual super-leaping: Immersive extreme jumping in VR. In Proc. the 10th Augmented Human International Conference, March 2019, Article No. 18. DOI: 10.1145/3311823.3311861.

[119] Li Y J, Jin D R, Wang M, Chen J L, Steinicke F, Hu S M, Zhao Q. Detection thresholds with joint horizontal and vertical gains in redirected jumping. In Proc. the 2021 IEEE Virtual Reality and 3D User Interfaces, March 27-April 1, 2021, pp.95-102. DOI: 10.1109/VR50410.2021.00030.

[120] Li Y, Wang M, Jin D, Steinicke F, Hu S, Zhao Q. Effects of virtual environment and self-representations on perception and physical performance in redirected jumping. Virtual Reality & Intelligent Hardware, 2021, 3(6): 451-469. DOI: 10.1016/j.vrih.2021.06.003.

[121] Liu X, Wang L. Redirected jumping in virtual scenes with alleys. Virtual Reality & Intelligent Hardware, 2021, 3(6): 470-483. DOI: 10.1016/j.vrih.2021.06.004.

[122] Havlı́k T, Hayashi D, Fujita K, Takashima K, Lindeman R W, Kitamura Y. JumpinVR: Enhancing jump experience in a limited physical space. In Proc. SIGGRAPH Asia 2019 XR, Nov. 2019, pp.19-20. DOI: 10.1145/3355355.3361895.

[123] Kumpei O, Kazuyuki F, Kazuki T, Yoshifumi K. PseudoJumpOn: Jumping onto steps in virtual reality. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2022, pp.635-643. DOI: 10.1109/VR51125.2022.00084.

[124] Yukai H, Kazuyuki F, Kazuki T, Morten F, Yoshifumi K. RedirectedDoors: Redirection while opening doors in virtual reality. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2022, pp.464-473. DOI: 10.1109/VR51125.2022.00066.

[1] Abdalaziz Sawwan and Jie Wu. 无线传感器网络的能量有效的最小移动充电设备覆盖研究[J]. 计算机科学技术学报, 2022, 37(4): 869-887.
[2] 申林峰, 陈煜驰, 刘江川. 智能手机上基于视线追踪的360°视频视场控制[J]. 计算机科学技术学报, 2022, 37(4): 906-918.
[3] 王瑀屏、谢森炜、王立辉、徐鸿金、田畑 智志、石川正俊. ARSlice:动态追踪与投影增强的头戴显示器[J]. 计算机科学技术学报, 2022, 37(3): 666-679.
[4] Marc-André Vef, Nafiseh Moti, Tim Süß, Markus Tacke, Tommaso Tocci, Ramon Nou, Alberto Miranda, Toni Cortes, André Brinkmann. GekkoFS—一种用于高性能计算应用的临时突发缓冲文件系统[J]. 计算机科学技术学报, 2020, 35(1): 72-91.
[5] Jian-Qiu Xu, Ralf Hartmut Güting, Yu Zheng, Ouri Wolfson. 具有运动方式的移动对象研究综述[J]. 计算机科学技术学报, 2019, 34(4): 709-726.
[6] Jianjun Zheng, Akbar Siami Namin. 一项关于移动目标防卫策略的综述:从结构体系视角[J]. 计算机科学技术学报, 2019, 34(1): 207-233.
[7] Hao-Ren Wang, Juan Lei, Ao Li, Yi-Hong Wu. 一种针对移动增强现实系统设计的基于几何信息的点云约减方法[J]. 计算机科学技术学报, 2018, 33(6): 1164-1177.
[8] Guo-Wei Wang, Jin-Dou Zhang, Jing Li. 用户异源移动轨迹链接的研究[J]. , 2018, 33(4): 792-806.
[9] Yue-Yue Chen, Pin Lv, De-Ke Guo, Tong-Qing Zhou, Ming Xu. 移动群智感知中任务与参与者匹配技术综述[J]. , 2018, 33(4): 768-791.
[10] Seilendria A. Hadiwardoyo, Subhadeep Patra, Carlos T. Calafate, Juan-Carlos Cano. 一款基于车载自主网络中车辆定位广告和路线共享的智能交通系统手机应用[J]. , 2018, 33(2): 249-262.
[11] Nour El Houda Bahloul, Saadi Boudjit, Marwen Abdennebi, Djallel Eddine Boubiche. 一个基于群集的无人飞行器需求路由协议[J]. , 2018, 33(2): 263-276.
[12] Yu-Tao Liu, Dong Du, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, Zhenkai Liang. 基于互不信任双方协作机制的密码管理器[J]. , 2018, 33(1): 98-115.
[13] Li Zhang, Xin-Yue Huang, Jing Jiang, Ya-Kun Hu. CSLabel:一种为移动评论添加标签的方法[J]. , 2017, 32(6): 1076-1089.
[14] Wei-Qing, Liu Jing Li. 面向仅有稀疏数据的移动云应用的一种自动化性能预测方法[J]. , 2017, 32(5): 936-956.
[15] Yuhun Jun, Jaemin Lee, Euiseong Seo. 一种基于分布式共享存储的计算迁移模式的远程I/O支持的评估方法[J]. , 2017, 32(5): 957-973.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周笛;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] 陈世华;. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. , 1986, 1(2): 54 -59 .
[3] C.Y.Chung; 华宣仁;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[4] 潘启敬;. A Routing Algorithm with Candidate Shortest Path[J]. , 1986, 1(3): 33 -52 .
[5] 王建潮; 魏道政;. An Effective Test Generation Algorithm for Combinational Circuits[J]. , 1986, 1(4): 1 -16 .
[6] 陈肇雄; 高庆狮;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[7] 黄河燕;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[8] 郑国梁; 李辉;. The Design and Implementation of the Syntax-Directed Editor Generator(SEG)[J]. , 1986, 1(4): 39 -48 .
[9] 闵应骅; 韩智德;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[10] 黄学东; 蔡莲红; 方棣棠; 迟边进; 周立; 蒋力;. A Computer System for Chinese Character Speech Input[J]. , 1986, 1(4): 75 -83 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: