计算机科学技术学报 ›› 2023,Vol. 38 ›› Issue (1): 146-165.doi: 10.1007/s11390-023-2908-4

所属专题: 综述 Computer Networks and Distributed Computing

• • 上一篇    下一篇

工业互联网内时钟同步研究综述

  

  • 收稿日期:2022-10-15 修回日期:2022-11-21 接受日期:2023-01-09 出版日期:2023-02-28 发布日期:2023-02-28

A Survey on Clock Synchronization in the Industrial Internet

Fan Dang1,† (党凡), Member, CCF, ACM, IEEE, Xi-Kai Sun2,† (孙熙凯), Ke-Bin Liu1 (刘克彬), Member, CCF, ACM, IEEE, Yi-Fan Xu3 (许逸凡), and Yun-Hao Liu1,2,* (刘云浩), Fellow, CCF, ACM, IEEE        

  1. Global Innovation Exchange, Tsinghua University, Beijing 100084, China
    Department of Automation, Tsinghua University, Beijing 100084, China
    School of Software, Tsinghua University, Beijing 100084, China
  • Received:2022-10-15 Revised:2022-11-21 Accepted:2023-01-09 Online:2023-02-28 Published:2023-02-28
  • Contact: Yun-Hao Liu E-mail:yunhao@tsinghua.edu.cn
  • About author:Yun-Hao Liu received his B.E. degree from the Department of Automation, Tsinghua University, Beijing, in 1995. He received his M.A. degree from Beijing Foreign Studies University, Beijing, in 1997. He received his M.S. and Ph.D. degrees in computer science and engineering from Michigan State University, East Lansing, in 2003 and 2004, respectively. He is a professor in the Department of Automation and the dean of the Global Innovation Exchange, Tsinghua University, Beijing. He is a fellow of CCF, ACM and IEEE. He is the Editor-in-Chief of ACM Transactions on Sensor Networks and Communications of the CCF. His research interests include Internet of Things, wireless sensor networks, indoor localization, the Industrial Internet, and cloud computing.
  • Supported by:
    This work is supported in part by the National Key Research and Development Program of China under Grant No. 2021YFB 2900100.

时钟同步是网络通信中最基本和最关键的机制之一。工业互联网是工业向数字化、网络化和智能化转型的基础设施,随着工业互联网在众多工业应用中的兴起,各种工业应用对时钟同步的精确性、安全性、复杂性和其他特征都提出了新的要求。例如,更高的精度往往需要更多的处理时间和更频繁的数据交互,从而导致更慢的收敛速度和更多的能源消耗。此外,时间同步的安全性往往也需要进一步增加能源消耗和提高计算的复杂性。在设计时钟同步协议时,必须在这些要求之间取得平衡。本文从同步机制的问题定义展开,然后介绍了对各种类型网络的标准化时钟同步协议和技术的研究,以及对这些协议和技术如何分类展开了讨论。随后分析了一些常用的工业网络协议(如PROFINET、时间敏感网络等)中的时钟同步协议及在一些工业场合中应用。本研究还探讨了时钟同步技术未来可能的发展方向。

关键词: 时钟同步, 工业通信, 工业互联网, 无线传感网

Abstract: Clock synchronization is one of the most fundamental and crucial network communication strategies. With the expansion of the Industrial Internet in numerous industrial applications, a new requirement for the precision, security, complexity, and other features of the clock synchronization mechanism has emerged in various industrial situations. This paper presents a study of standardized clock synchronization protocols and techniques for various types of networks, and a discussion of how these protocols and techniques might be classified. Following that is a description of how certain clock synchronization protocols and technologies, such as PROFINET, Time-Sensitive Networking (TSN), and other well-known industrial networking protocols, can be applied in a number of industrial situations. This study also investigates the possible future development of clock synchronization techniques and technologies.

Key words: clock synchronization, industrial communication, Industrial Internet, wireless sensor network

<table class="reference-tab" style="background-color:#FFFFFF;width:914.104px;color:#333333;font-family:Calibri, Arial, 微软雅黑, "font-size:16px;"> <tbody> <tr class="document-box" id="b1"> <td valign="top" class="td1"> [1] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Lévesque M, Tipper D. A survey of clock synchronization over packet-switched networks. <i>IEEE Communications Surveys & Tutorials</i>, 2016, 18(4): 2926–2947. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/COMST.2016.2590438" target="_blank">10.1109/COMST.2016.2590438</a>. </div> </td> </tr> <tr class="document-box" id="b2"> <td valign="top" class="td1"> [2] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Cintuglu M H, Mohammed O A, Akkaya K, Uluagac A S. A survey on smart grid cyber-physical system testbeds. <i>IEEE Communications Surveys & Tutorials</i>, 2017, 19(1): 446–464. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/COMST.2016.2627399" target="_blank">10.1109/COMST.2016.2627399</a>. </div> </td> </tr> <tr class="document-box" id="b3"> <td valign="top" class="td1"> [3] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Yadav P, McCann J A, Pereira T. Self-synchronization in duty-cycled Internet of Things (IoT) applications. <i>IEEE Internet of Things Journal</i>, 2017, 4(6): 2058–2069. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2017.2757138" target="_blank">10.1109/JIOT.2017.2757138</a>. </div> </td> </tr> <tr class="document-box" id="b4"> <td valign="top" class="td1"> [4] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> He J P, Cheng P, Shi L, Chen J M. SATS: Secure average-consensus-based time synchronization in wireless sensor networks. <i>IEEE Trans. Signal Processing</i>, 2013, 61(24): 6387–6400. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TSP.2013.2286102" target="_blank">10.1109/TSP.2013.2286102</a>. </div> </td> </tr> <tr class="document-box" id="b5"> <td valign="top" class="td1"> [5] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Regnath E, Shivaraman N, Shreejith S, Easwaran A, Steinhorst S. Blockchain, what time is it? Trustless datetime synchronization for IoT. In <i>Proc. the 2020 International Conference on Omni-layer Intelligent Systems</i>, Aug. 31–Sept. 2, 2020. DOI: <a href="http://dx.doi.org/10.1109/COINS49042.2020.9191420">10.1109/COINS49042.2020.9191420</a>. </div> </td> </tr> <tr class="document-box" id="b6"> <td valign="top" class="td1"> [6] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chalapathi G S S, Chamola V, Guranarayanan S <i>et al</i>. E-SATS: An efficient and simple time synchronization protocol for cluster-based wireless sensor networks. <i>IEEE Sensors Journal</i>, 2019, 19(21): 10144–10156. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2019.2922366" target="_blank">10.1109/JSEN.2019.2922366</a>. </div> </td> </tr> <tr class="document-box" id="b7"> <td valign="top" class="td1"> [7] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Richards D, Abdelgawad A, Yelamarthi K. How does encryption influence timing in IoT? In <i>Proc. the 2018 IEEE Global Conference on Internet of Things</i>, Dec. 2018. DOI: <a href="http://dx.doi.org/10.1109/GCIoT.2018.8620133">10.1109/GCIoT.2018.8620133</a>. </div> </td> </tr> <tr class="document-box" id="b8"> <td valign="top" class="td1"> [8] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Zhang K, Liang X H, Lu R X, Shen X M. Sybil attacks and their defenses in the Internet of Things. <i>IEEE Internet of Things Journal</i>, 2014, 1(5): 372–383. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2014.2344013" target="_blank">10.1109/JIOT.2014.2344013</a>. </div> </td> </tr> <tr class="document-box" id="b9"> <td valign="top" class="td1"> [9] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Qiu T, Liu X Z, Han M, Ning H S, Wu D O. A secure time synchronization protocol against fake timestamps for large-scale Internet of Things. <i>IEEE Internet of Things Journal</i>, 2017, 4(6): 1879–1889. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2017.2714904" target="_blank">10.1109/JIOT.2017.2714904</a>. </div> </td> </tr> <tr class="document-box" id="b10"> <td valign="top" class="td1"> [10] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Elson J, Girod L, Estrin D. Fine-grained network time synchronization using reference broadcasts. In <i>Proc. the 5th Symposium on Operating Systems Design and Implementation</i>, Dec. 2002, pp.147–163. </div> </td> </tr> <tr class="document-box" id="b11"> <td valign="top" class="td1"> [11] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Beke T, Dijk E, Ozcelebi T, Verhoeven R. Time synchronization in IoT mesh networks. In <i>Proc. the 2020 International Symposium on Networks, Computers and Communications</i>, Oct. 2020. DOI: <a href="http://dx.doi.org/10.1109/ISNCC49221.2020.9297296">10.1109/ISNCC49221.2020.9297296</a>. </div> </td> </tr> <tr class="document-box" id="b12"> <td valign="top" class="td1"> [12] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Mani S K, Durairajan R, Barford P, Sommers J. An architecture for IoT clock synchronization. In <i>Proc. the 8th International Conference on the Internet of Things</i>, Oct. 2018, p.17. DOI: <a href="http://dx.doi.org/10.1145/3277593.3277606">10.1145/3277593.3277606</a>. </div> </td> </tr> <tr class="document-box" id="b13"> <td valign="top" class="td1"> [13] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Shi F R, Tuo X G, Yang S X, Lu J, Li H L. Rapid-flooding time synchronization for large-scale wireless sensor networks. <i>IEEE Trans. Industrial Informatics</i>, 2020, 16(3): 1581–1590. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2019.2927292" target="_blank">10.1109/TII.2019.2927292</a>. </div> </td> </tr> <tr class="document-box" id="b14"> <td valign="top" class="td1"> [14] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ferrari F, Zimmerling M, Thiele L, Saukh O. Efficient network flooding and time synchronization with glossy. In <i>Proc. the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks</i>, Apr. 2011, pp.73–84. </div> </td> </tr> <tr class="document-box" id="b15"> <td valign="top" class="td1"> [15] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huan X T, Kim K S. Per-hop delay compensation in time synchronization for multi-hop wireless sensor networks based on packet-relaying gateways. <i>IEEE Communications Letters</i>, 2020, 24(10): 2300–2304. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/LCOMM.2020.3002705" target="_blank">10.1109/LCOMM.2020.3002705</a>. </div> </td> </tr> <tr class="document-box" id="b16"> <td valign="top" class="td1"> [16] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Jia P Y, Wang X B, Shen X M. Digital-twin-enabled intelligent distributed clock synchronization in industrial IoT systems. <i>IEEE Internet of Things Journal</i>, 2021, 8(6): 4548–4559. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2020.3029131" target="_blank">10.1109/JIOT.2020.3029131</a>. </div> </td> </tr> <tr class="document-box" id="b17"> <td valign="top" class="td1"> [17] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Jia P Y, Wang X B, Shen X M. Passive network synchronization based on concurrent observations in industrial IoT systems. <i>IEEE Internet of Things Journal</i>, 2021, 8(18): 14028–14038. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2021.3070242" target="_blank">10.1109/JIOT.2021.3070242</a>. </div> </td> </tr> <tr class="document-box" id="b18"> <td valign="top" class="td1"> [18] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Zhu S P, Zheng X L, Liu L, Ma H D. AirSync: Time synchronization for large-scale IoT networks using aircraft signals. In <i>Proc. the 17th Annual IEEE International Conference on Sensing, Communication, and Networking</i>, Jun. 2020. DOI: <a href="http://dx.doi.org/10.1109/SECON48991.2020.9158433">10.1109/SECON48991.2020.9158433</a>. </div> </td> </tr> <tr class="document-box" id="b19"> <td valign="top" class="td1"> [19] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Nishi H, Song E Y, Nakamura Y, Lee K B, Liu Y C, Tsang K F. Time synchronization of IEEE P1451.0 and P1451.1.6 standard-based sensor networks. In <i>Proc. the 47th Annual Conference of the IEEE Industrial Electronics Society</i>, Oct. 2021. DOI: <a href="http://dx.doi.org/10.1109/IECON48115.2021.9589904">10.1109/IECON48115.2021.9589904</a>. </div> </td> </tr> <tr class="document-box" id="b20"> <td valign="top" class="td1"> [20] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huan X T, Kim K S, Lee S, Lim E G, Marshall A. A beaconless asymmetric energy-efficient time synchronization scheme for resource-constrained multi-hop wireless sensor networks. <i>IEEE Trans. Communications</i>, 2020, 68(3): 1716–1730. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2019.2960344" target="_blank">10.1109/TCOMM.2019.2960344</a>. </div> </td> </tr> <tr class="document-box" id="b21"> <td valign="top" class="td1"> [21] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huan X T, Kim K S, Zhang J Q. NISA: Node identification and spoofing attack detection based on clock features and radio information for wireless sensor networks. <i>IEEE Trans. Communications</i>, 2021, 69(7): 4691–4703. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2021.3071448" target="_blank">10.1109/TCOMM.2021.3071448</a>. </div> </td> </tr> <tr class="document-box" id="b22"> <td valign="top" class="td1"> [22] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Bhandari S, Wang X B. Prioritized clock synchronization for event critical applications in wireless IoT networks. <i>IEEE Sensors Journal</i>, 2019, 19(16): 7120–7128. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2019.2912938" target="_blank">10.1109/JSEN.2019.2912938</a>. </div> </td> </tr> <tr class="document-box" id="b23"> <td valign="top" class="td1"> [23] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Schmid T, Shea R, Charbiwala Z, Friedman J, Srivastava M B, Cho Y H. On the interaction of clocks, power, and synchronization in duty-cycled embedded sensor nodes. <i>ACM Trans. Sensor Networks</i>, 2010, 7(3): Article No. 24. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1145/1807048.1807053" target="_blank">10.1145/1807048.1807053</a>. </div> </td> </tr> <tr class="document-box" id="b24"> <td valign="top" class="td1"> [24] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Yang S J, Xu C Q, Guan J F, Zhang T. Event-based diffusion Kalman filter strategy for clock synchronization in WSNs. In <i>Proc. the 2018 International Conference on Networking and Network Applications</i>, Oct. 2018, pp.270–276. DOI: <a href="http://dx.doi.org/10.1109/NANA.2018.8648770">10.1109/NANA.2018.8648770</a>. </div> </td> </tr> <tr class="document-box" id="b25"> <td valign="top" class="td1"> [25] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Jia P Y, Wang X B, Zheng K. Distributed clock synchronization based on intelligent clustering in local area industrial IoT systems. <i>IEEE Trans. Industrial Informatics</i>, 2020, 16(6): 3697–3707. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2019.2937331" target="_blank">10.1109/TII.2019.2937331</a>. </div> </td> </tr> <tr class="document-box" id="b26"> <td valign="top" class="td1"> [26] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Wang Z W, Zeng P, Kong L H, Li D, Jin X. Node-identification-based secure time synchronization in industrial wireless sensor networks. <i>Sensors</i>, 2018, 18(8): 2718. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/s18082718" target="_blank">10.3390/s18082718</a>. </div> </td> </tr> <tr class="document-box" id="b27"> <td valign="top" class="td1"> [27] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Wu J, Zhang L Y, Bai Y, Sun Y S. Cluster-based consensus time synchronization for wireless sensor networks. <i>IEEE Sensors Journal</i>, 2015, 15(3): 1404–1413. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2014.2363471" target="_blank">10.1109/JSEN.2014.2363471</a>. </div> </td> </tr> <tr class="document-box" id="b28"> <td valign="top" class="td1"> [28] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Kadambar S, Chavva A K R. Low complexity ML synchronization for 3GPP NB-IoT. In <i>Proc. the 2018 International Conference on Signal Processing and Communications</i>, Jul. 2018, pp.307–311. DOI: <a href="http://dx.doi.org/10.1109/SPCOM.2018.8724439">10.1109/SPCOM.2018.8724439</a>. </div> </td> </tr> <tr class="document-box" id="b29"> <td valign="top" class="td1"> [29] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Dian F J, Yousefi A, Somaratne K. A study in accuracy of time synchronization of BLE devices using connection-based event. In <i>Proc. the 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference</i>, Oct. 2017, pp.595–601. DOI: <a href="http://dx.doi.org/10.1109/IEMCON.2017.8117156">10.1109/IEMCON.2017.8117156</a>. </div> </td> </tr> <tr class="document-box" id="b30"> <td valign="top" class="td1"> [30] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Gore R N, Lisova E, Åkerberg J, Björkman M. CoSiNeT: A lightweight clock synchronization algorithm for industrial IoT. In <i>Proc. the 4th IEEE International Conference on Industrial Cyber-Physical Systems</i>, May 2021, pp.92–97. DOI: <a href="http://dx.doi.org/10.1109/ICPS49255.2021.9468174">10.1109/ICPS49255.2021.9468174</a>. </div> </td> </tr> <tr class="document-box" id="b31"> <td valign="top" class="td1"> [31] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sommer P, Wattenhofer R. Gradient clock synchronization in wireless sensor networks. In <i>Proc. the 2009 International Conference on Information Processing in Sensor Networks</i>, Apr. 2009, pp.37–48. </div> </td> </tr> <tr class="document-box" id="b32"> <td valign="top" class="td1"> [32] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Li Y, Chen S, Lin F J. A coarse timing synchronization method of low SNR OFDM systems for IoT. In <i>Proc. the 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications</i>, Nov. 2018, pp.166–167. DOI: <a href="http://dx.doi.org/10.1109/CICTA.2018.8705961">10.1109/CICTA.2018.8705961</a>. </div> </td> </tr> <tr class="document-box" id="b33"> <td valign="top" class="td1"> [33] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Alvarez M A, Spagnolini U. Collision vs non-collision distributed time synchronization for dense IoT deployments. In <i>Proc. the 2017 IEEE International Conference on Communications</i>, May 2017. DOI: <a href="http://dx.doi.org/10.1109/ICC.2017.7997469">10.1109/ICC.2017.7997469</a>. </div> </td> </tr> <tr class="document-box" id="b34"> <td valign="top" class="td1"> [34] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Idrees Z, Granados J, Sun Y, Latif S, Gong L, Zou Z, Zheng L R. IEEE 1588 for clock synchronization in industrial IoT and related applications: A review on contributing technologies, protocols and enhancement methodologies. <i>IEEE Access</i>, 2020, 8: 155660–155678. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/ACCESS.2020.3013669" target="_blank">10.1109/ACCESS.2020.3013669</a>. </div> </td> </tr> <tr class="document-box" id="b35"> <td valign="top" class="td1"> [35] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Djenouri D. <i>R <span style="line-height:inherit;vertical-align:baseline;">4</span>Syn</i>: Relative referenceless receiver/receiver time synchronization in wireless sensor networks. <i>IEEE Signal Processing Letters</i>, 2012, 19(4): 175–178. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/LSP.2012.2185491" target="_blank">10.1109/LSP.2012.2185491</a>. </div> </td> </tr> <tr class="document-box" id="b36"> <td valign="top" class="td1"> [36] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Cheng S Y, Cai Z P, Li J Z, Gao H. Extracting kernel dataset from big sensory data in wireless sensor networks. <i>IEEE Trans. Knowledge and Data Engineering</i>, 2017, 29(4): 813–827. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TKDE.2016.2645212" target="_blank">10.1109/TKDE.2016.2645212</a>. </div> </td> </tr> <tr class="document-box" id="b37"> <td valign="top" class="td1"> [37] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Su W, Akyildiz I F. Time-diffusion synchronization protocol for wireless sensor networks. <i>IEEE/ACM Trans. Networking</i>, 2005, 13(2): 384–397. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TNET.2004.842228" target="_blank">10.1109/TNET.2004.842228</a>. </div> </td> </tr> <tr class="document-box" id="b38"> <td valign="top" class="td1"> [38] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Gong F Y, Sichitiu M L. CESP: A low-power high-accuracy time synchronization protocol. <i>IEEE Trans. Vehicular Technology</i>, 2016, 65(4): 2387–2396. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TVT.2015.2417810" target="_blank">10.1109/TVT.2015.2417810</a>. </div> </td> </tr> <tr class="document-box" id="b39"> <td valign="top" class="td1"> [39] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Resner D, Fröhlich A A, Wanner L F. Speculative precision time protocol: Submicrosecond clock synchronization for the IoT. In <i>Proc. the 21st International Conference on Emerging Technologies and Factory Automation</i>, Sept. 2016. DOI: <a href="http://dx.doi.org/10.1109/ETFA.2016.7733533">10.1109/ETFA.2016.7733533</a>. </div> </td> </tr> <tr class="document-box" id="b40"> <td valign="top" class="td1"> [40] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Raju N, Hasan K F. A feasibility study on SNTP and SPoT protocols on time synchronization in Internet of Things. arXiv: 2010.09219, 2020. <a href="https://arxiv.org/abs/2010.09219">https://arxiv.org/abs/2010.09219</a>, Dec. 2022. </div> </td> </tr> <tr class="document-box" id="b41"> <td valign="top" class="td1"> [41] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Bansal M, Gupta A. Out-degree based clock synchronization in wireless networks using precision time protocol. In <i>Proc. the 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems</i>, Dec. 2018. DOI: <a href="http://dx.doi.org/10.1109/ANTS.2018.8710042">10.1109/ANTS.2018.8710042</a>. </div> </td> </tr> <tr class="document-box" id="b42"> <td valign="top" class="td1"> [42] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Maróti M, Kusy B, Simon S, Lédeczi Á. The flooding time synchronization protocol. In <i>Proc. the 2nd International Conference on Embedded Networked Sensor Systems</i>, Nov. 2004, pp.39–49. DOI: <a href="http://dx.doi.org/10.1145/1031495.1031501">10.1145/1031495.1031501</a>. </div> </td> </tr> <tr class="document-box" id="b43"> <td valign="top" class="td1"> [43] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sheu J P, Hu W K, Lin J C. Ratio-based time synchronization protocol in wireless sensor networks. <i>Telecommunication Systems</i>, 2008, 39(1): 25–35. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11235-008-9081-5" target="_blank">10.1007/s11235-008-9081-5</a>. </div> </td> </tr> <tr class="document-box" id="b44"> <td valign="top" class="td1"> [44] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Kim K S, Lee S, Lim E G. Energy-efficient time synchronization based on asynchronous source clock frequency recovery and reverse two-way message exchanges in wireless sensor networks. <i>IEEE Trans. Communications</i>, 2017, 65(1): 347–359. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2016.2626281" target="_blank">10.1109/TCOMM.2016.2626281</a>. </div> </td> </tr> <tr class="document-box" id="b45"> <td valign="top" class="td1"> [45] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Noh K L, Serpedin E, Qaraqe K. A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization. <i>IEEE Trans. Wireless Communications</i>, 2008, 7(9): 3318–3322. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TWC.2008.070343" target="_blank">10.1109/TWC.2008.070343</a>. </div> </td> </tr> <tr class="document-box" id="b46"> <td valign="top" class="td1"> [46] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Qiu T, Chi L, Guo W <i>et al</i>. STETS: A novel energy-efficient time synchronization scheme based on embedded networking devices. <i>Microprocessors and Microsystems</i>, 2015, 39(8): 1285–1295. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.micpro.2015.07.006" target="_blank">10.1016/j.micpro.2015.07.006</a>. </div> </td> </tr> <tr class="document-box" id="b47"> <td valign="top" class="td1"> [47] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Qiu T, Zhang Y S, Qiao D J, Zhang X Y, Wymore M L, Sangaiah A K. A robust time synchronization scheme for Industrial Internet of Things. <i>IEEE Trans. Industrial Informatics</i>, 2018, 14(8): 3570–3580. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2017.2738842" target="_blank">10.1109/TII.2017.2738842</a>. </div> </td> </tr> <tr class="document-box" id="b48"> <td valign="top" class="td1"> [48] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Navas R E, Toutain L. LATe: A lightweight authenticated time synchronization protocol for IoT. In <i>Proc. the 2018 Global Internet of Things Summit</i>, Jun. 2018. DOI: <a href="http://dx.doi.org/10.1109/GIOTS.2018.8534565">10.1109/GIOTS.2018.8534565</a>. </div> </td> </tr> <tr class="document-box" id="b49"> <td valign="top" class="td1"> [49] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Fan K, Wang S Y, Ren Y H, Yang K, Yan Z, Li H, Yang Y T. Blockchain-based secure time protection scheme in IoT. <i>IEEE Internet of Things Journal</i>, 2019, 6(3): 4671–4679. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2018.2874222" target="_blank">10.1109/JIOT.2018.2874222</a>. </div> </td> </tr> <tr class="document-box" id="b50"> <td valign="top" class="td1"> [50] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> He J P, Cheng P, Shi L, Chen J M, Sun Y X. Time synchronization in WSNs: A maximum-value-based consensus approach. <i>IEEE Trans. Automatic Control</i>, 2014, 59(3): 660–675. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TAC.2013.2286893" target="_blank">10.1109/TAC.2013.2286893</a>. </div> </td> </tr> <tr class="document-box" id="b51"> <td valign="top" class="td1"> [51] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Schenato L, Fiorentin F. Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks. <i>Automatica</i>, 2011, 47(9): 1878–1886. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.automatica.2011.06.012" target="_blank">10.1016/j.automatica.2011.06.012</a>. </div> </td> </tr> <tr class="document-box" id="b52"> <td valign="top" class="td1"> [52] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Wang Z W, Zeng P, Zhou M T, Li D, Wang J T. Cluster-based maximum consensus time synchronization for industrial wireless sensor networks. <i>Sensors</i>, 2017, 17(1): 141. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/s17010141" target="_blank">10.3390/s17010141</a>. </div> </td> </tr> <tr class="document-box" id="b53"> <td valign="top" class="td1"> [53] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Shivaraman N, Schuster P, Ramanathan S, Easwaran A, Steinhorst S. C-Sync: The resilient time synchronization protocol. In <i>Proc. the 19th ACM/IEEE International Conference on Information Processing in Sensor Networks </i>(<i>poster</i>), Apr. 2020, pp.333–334. DOI: <a href="http://dx.doi.org/10.1109/IPSN48710.2020.00-20">10.1109/IPSN48710.2020.00-20</a>. </div> </td> </tr> <tr class="document-box" id="b54"> <td valign="top" class="td1"> [54] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Hu X, Park T, Shin K G. Attack-tolerant time-synchronization in wireless sensor networks. In <i>Proc. the 27th Conference on Computer Communications</i>, Apr. 2008, pp.41–45. DOI: <a href="http://dx.doi.org/10.1109/INFOCOM.2008.17">10.1109/INFOCOM.2008.17</a>. </div> </td> </tr> <tr class="document-box" id="b55"> <td valign="top" class="td1"> [55] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> He J P, Chen J M, Cheng P, Cao X H. Secure time synchronization in wireless sensor networks: A maximum consensus-based approach. <i>IEEE Trans. Parallel and Distributed Systems</i>, 2014, 25(4): 1055–1065. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TPDS.2013.150" target="_blank">10.1109/TPDS.2013.150</a>. </div> </td> </tr> <tr class="document-box" id="b56"> <td valign="top" class="td1"> [56] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Feld J. PROFINET-scalable factory communication for all applications. In <i>Proc. the 2004 IEEE International Workshop on Factory Communication Systems</i>, Sept. 2004, pp.33–38. DOI: <a href="http://dx.doi.org/10.1109/WFCS.2004.1377673">10.1109/WFCS.2004.1377673</a>. </div> </td> </tr> <tr class="document-box" id="b57"> <td valign="top" class="td1"> [57] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Fontanelli D, Macii D, Rinaldi S, Ferrari P, Flammini A. Performance analysis of a clock state estimator for PROFINET IO IRT synchronization. In <i>Proc. the 2013 IEEE International Instrumentation and Measurement Technology Conference</i>, May 2013, pp.1828–1833. DOI: <a href="http://dx.doi.org/10.1109/I2MTC.2013.6555730">10.1109/I2MTC.2013.6555730</a>. </div> </td> </tr> <tr class="document-box" id="b58"> <td valign="top" class="td1"> [58] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ferrari P, Flammini A, Marioli D, Rinaldi S, Sisinni E, Taroni A, Venturini F. Clock synchronization of PTP-based devices through PROFINET IO networks. In <i>Proc. the 2008 IEEE International Conference on Emerging Technologies and Factory Automation</i>, Sept. 2008, pp.496–499. DOI: <a href="http://dx.doi.org/10.1109/ETFA.2008.4638445">10.1109/ETFA.2008.4638445</a>. </div> </td> </tr> <tr class="document-box" id="b59"> <td valign="top" class="td1"> [59] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ferrari P, Flammini A, Rinaldi S, Sisinni E. On the seamless interconnection of IEEE1588-based devices using a PROFINET IO infrastructure. <i>IEEE Trans. Industrial Informatics</i>, 2010, 6(3): 381–392. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2010.2051954" target="_blank">10.1109/TII.2010.2051954</a>. </div> </td> </tr> <tr class="document-box" id="b60"> <td valign="top" class="td1"> [60] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Val I, Seijo ó, Torrego R, Astarloa A. IEEE 802.1AS clock synchronization performance evaluation of an integrated wired-wireless TSN architecture. <i>IEEE Trans. Industrial Informatics</i>, 2022, 18(5): 2986–2999. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2021.3106568" target="_blank">10.1109/TII.2021.3106568</a>. </div> </td> </tr> <tr class="document-box" id="b61"> <td valign="top" class="td1"> [61] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Zhao Y, Yang Z, He X W, Wu J H, Cao H, Dong L, Dang F, Liu Y H. E-TSN: Enabling event-triggered critical traffic in time-sensitive networking for industrial applications. In <i>Proc. the 42nd International Conference on Distributed Computing Systems</i>, Jul. 2022, pp.691–701. DOI: <a href="http://dx.doi.org/10.1109/ICDCS54860.2022.00072">10.1109/ICDCS54860.2022.00072</a>. </div> </td> </tr> <tr class="document-box" id="b62"> <td valign="top" class="td1"> [62] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chen D J, Nixon M, Mok A. WirelessHART<span style="line-height:inherit;vertical-align:baseline;">TM</span>: Real-Time Mesh Network for Industrial Automation. Springer, 2010. </div> </td> </tr> <tr class="document-box" id="b63"> <td valign="top" class="td1"> [63] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Saifullah A, Xu Y, Lu C Y, Chen Y X. End-to-end delay analysis for fixed priority scheduling in WirelessHART networks. In <i>Proc. the 17th IEEE Real-Time and Embedded Technology and Applications Symposium</i>, Apr. 2011, pp.13–22. DOI: <a href="http://dx.doi.org/10.1109/RTAS.2011.10">10.1109/RTAS.2011.10</a>. </div> </td> </tr> <tr class="document-box" id="b64"> <td valign="top" class="td1"> [64] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Wang Y J, Qian Z H, Wang G Q, Zhang X. Research on energy-efficient time synchronization algorithm for wireless sensor networks. <i>Journal of Electronics & Information Technology</i>, 2012, 34(9): 2174–2179. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3724/SP.J.1146.2012.00236" target="_blank">10.3724/SP.J.1146.2012.00236</a>. </div> </td> </tr> <tr class="document-box" id="b65"> <td valign="top" class="td1"> [65] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huang T, Huang S Z. Low power WirelessHART network time synchronization protocol. Chinese Journal of Electron Devices, 2014, 37(1): 85–88. DOI: <a href="https://doi.org/10.3969/j.issn.1005-9490.2014.01.021">10.3969/j.issn.1005-9490.2014.01.021</a>. (in Chinese) </div> </td> </tr> <tr class="document-box" id="b66"> <td valign="top" class="td1"> [66] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Liang W, Zhang X L, Xiao Y, Wang F Q, Zeng P, Yu H B. Survey and experiments of WIA-PA specification of industrial wireless network. <i>Wireless Communications and Mobile Computing</i>, 2011, 11(8): 1197–1212. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1002/wcm.976" target="_blank">10.1002/wcm.976</a>. </div> </td> </tr> <tr class="document-box" id="b67"> <td valign="top" class="td1"> [67] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> He N, Liu F. Research on time synchronization of WIA-PA industrial wireless networks. In <i>Proc. the 2009 International Conference on Computational Intelligence and Software Engineering</i>, Dec. 2009. DOI: <a href="http://dx.doi.org/10.1109/CISE.2009.5363213">10.1109/CISE.2009.5363213</a>. </div> </td> </tr> <tr class="document-box" id="b68"> <td valign="top" class="td1"> [68] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Rahman M, El-Khatib K. Secure time synchronization for wireless sensor networks based on bilinear pairing functions. <i>IEEE Trans. Parallel and Distributed Systems</i>, 2010. DOI: <a href="https://doi.org/10.1109/TPDS.2010.94">10.1109/TPDS.2010.94</a>. </div> </td> </tr> <tr class="document-box" id="b69"> <td valign="top" class="td1"> [69] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sivrikaya F, Yener B. Time synchronization in sensor networks: A survey. <i>IEEE Network</i>, 2004, 18(4): 45–50. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/MNET.2004.1316761" target="_blank">10.1109/MNET.2004.1316761</a>. </div> </td> </tr> <tr class="document-box" id="b70"> <td valign="top" class="td1"> [70] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Faizulkhakov Y R. Time synchronization methods for wireless sensor networks: A survey. <i>Programming and Computer Software</i>, 2007, 33(4): 214–226. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1134/S0361768807040044" target="_blank">10.1134/S0361768807040044</a>. </div> </td> </tr> <tr class="document-box" id="b71"> <td valign="top" class="td1"> [71] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Lasassmeh S M, Conrad J M. Time synchronization in wireless sensor networks: A survey. In <i>Proc. the 2010 IEEE SoutheastCon</i>, Mar. 2010, pp.242-245. DOI: <a href="http://dx.doi.org/10.1109/SECON.2010.5453878">10.1109/SECON.2010.5453878</a>. </div> </td> </tr> <tr class="document-box" id="b72"> <td valign="top" class="td1"> [72] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sarvghadi M A, Wan T C. Message passing based time synchronization in wireless sensor networks: A survey. <i>International Journal of Distributed Sensor Networks</i>, 2016, 12(5): 1280904. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1155/2016/1280904" target="_blank">10.1155/2016/1280904</a>. </div> </td> </tr> <tr class="document-box" id="b73"> <td valign="top" class="td1"> [73] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Puttnies H, Danielis P, Sharif A R, Timmermann D. Estimators for time synchronization—Survey, analysis, and outlook. <i>IoT</i>, 2020, 1(2): 398–435. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/iot1020023" target="_blank">10.3390/iot1020023</a>. </div> </td> </tr> </tbody> </table>
[1] Sven Pullwitt, Robert Hartung, Ulf Kulau, Lars Wolf. 考虑环境影响的无线传感网络中精确比特误差仿真[J]. 计算机科学技术学报, 2020, 35(4): 809-824.
[2] Rui Li, Ke-Bin Liu, Xiangyang Li, Yuan He, Wei Xi, Zhi Wang, Ji-Zhong Zhao, Meng Wan. 无线传感网诊断方法的评估:概念与分析[J]. , 2014, 29(5): 887-900.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周笛;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] 李未;. A Structural Operational Semantics for an Edison Like Language(2)[J]. , 1986, 1(2): 42 -53 .
[3] 李万学;. Almost Optimal Dynamic 2-3 Trees[J]. , 1986, 1(2): 60 -71 .
[4] 刘明业; 洪恩宇;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[5] C.Y.Chung; 华宣仁;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[6] 孙钟秀; 商陆军;. DMODULA:A Distributed Programming Language[J]. , 1986, 1(2): 25 -31 .
[7] 陈世华;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[8] 高庆狮; 张祥; 杨树范; 陈树清;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[9] 金兰; 杨元元;. A Modified Version of Chordal Ring[J]. , 1986, 1(3): 15 -32 .
[10] 潘启敬;. A Routing Algorithm with Candidate Shortest Path[J]. , 1986, 1(3): 33 -52 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: