计算机科学技术学报 ›› 2023,Vol. 38 ›› Issue (1): 196-210.doi: 10.1007/s11390-023-2835-4

所属专题: Artificial Intelligence and Pattern Recognition Computer Networks and Distributed Computing

• • 上一篇    下一篇

基于图聚类的语义嵌入增强中文领域的实体链接

  

  • 收稿日期:2022-09-16 修回日期:2022-10-30 接受日期:2023-01-10 出版日期:2023-02-28 发布日期:2023-02-28

Improving Entity Linking in Chinese Domain by Sense Embedding Based on Graph Clustering

Zhao-Bo Zhang (张照博), Member, CCF, Zhi-Man Zhong (钟芷漫), Member, CCF, Ping-Peng Yuan (袁平鹏), Senior Member, CCF, Member, ACM, IEEE, and Hai Jin* (金 海), Fellow, CCF, IEEE, Life Member, ACM        

  1. National Engineering Research Center for Big Data Technology and System, Huazhong University of Science and Technology
    Wuhan 430074, China

    Service Computing Technology and System Laboratory, Huazhong University of Science and Technology
    Wuhan 430074, China

    Cluster and Grid Computing Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
    School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2022-09-16 Revised:2022-10-30 Accepted:2023-01-10 Online:2023-02-28 Published:2023-02-28
  • Contact: Hai Jin E-mail:hjin@hust.edu.cn
  • About author:Hai Jin is a chair professor of computer science and engineering at Huazhong University of Science and Technology, Wuhan. Jin received his Ph.D. degree in computer engineering from Huazhong University of Science and Technology, Wuhan, in 1994. In 1996, he was awarded a German Academic Exchange Service Fellowship to visit the Technical University of Chemnitz, Straβe der Nationen. Jin worked at The University of Hong Kong, Hong Kong, between 1998 and 2000, and as a visiting scholar at the University of Southern California, Los Angeles, between 1999 and 2000. He was awarded Excellent Youth Award from the National Science Foundation of China in 2001. Jin is a CCF Fellow, IEEE Fellow, and a life member of ACM. He has co-authored 22 books and published over 900 research papers. His research interests include computer architecture, virtualization technology, distributed computing, big data processing, network storage, and network security.
  • Supported by:
    The work was supported by the National Natural Science Foundation of China under Grant Nos. 61932004 and 62072205.

1、 研究背景(context)
实体链接是指通过候选实体的生成和候选实体排名将文本中的字符串与知识库中的相应实体联系起来。它在很多的NLP任务,比如知识图谱补全等方面具有重要作用。而中文实体链接相比于英文环境下的实体链接,需要考虑更多的因素,因为中文文本没有单词间的空格以及可以直接表明实体的大写字母。而且在比如工业制造领域中,实体通常由长字符串组成,由此引发的实体内单词嵌套等问题,导致无法直接使用常用的单词嵌入等来处理实体的语义,需要通过分割其内部的单词和字符来实现向量化操作。而且构成实体的词的语义有时是模糊的,如“Dfvf3000发电机抗压实验仪表”这种无法直接表征语义的长实体名,内部还包含了一些可能存在模糊语义的“抗压”,“实验”,“仪表”等单词。因此,领域内的单词的语义空间是一般领域的词嵌入空间的一个子空间,如果直接采用一般领域内的词嵌入的话,可能会引入许多的噪声从而降低准确度。
2、 目的(Objective)
为了提高工业制造领域的实体链接的性能,我们从实体链接的两个步骤:候选实体生成和候选实体排名进行分别设计方案来改进。主要目的是在提高召回率的同时,保证排序过程中的向量化计算的语义特征的精度。
3、 方法(Method)
首先,我们实现了一种基于n-gram的候选实体生成方法,以提高召回率并减少由于单词嵌套带来的噪声。这一方法将文本视为字符序列,并且通过滑动窗口来获取所有的可能得实体的集合。然后,我们通过引入语义嵌入来增强相应的候选实体排名机制。考虑到词向量的多义性和工业制造领域的单一语义的需求之间的矛盾,我们设计了一个基于图聚类的语义嵌入模型SECEL,包含两种聚类算法(SCPM和WWF-MCL)。它采用无监督的聚类方法进行单词语义的归纳,并结合上下文学习语义嵌入。排序时,针对所有候选实体的排序使用三个特征:单词重叠度,字符重叠度,以及由前述语义嵌入计算得来的语义相似度。整体的排序过程为:通过组合三个特征并将其输入XGBoost分类器进行训练,输出每一个候选实体的预测标签,即是否为目标实体。
4、 结果(Result & Findings)
为了测试我们的基于图聚类的语义嵌入的性能,在经典的语义相似度任务(SCWS)上测试了生成的语义嵌入的质量,并在一个语义消歧任务(TWSI)上证明了其在一般领域内的消歧能力。相比于基线模型(GloVe,GenSense,ELMo),SCPM和WWF-MCL算法都实现了在语义准确上的超越,其中WWF-MCL算法对比表现最好的ELMo提高了1.8%的准确率。而在语义消歧任务中,两种算法生成的语义嵌入都有较好的表现,而WWF-MCL相比表现最佳的基线模型(Dependencies)再次实现了最好的精度(+1.2%),召回率(+1.9%)和F1(+1.5%)。工业制造领域实体链接任务基于半手动构建的两个数据集IEL-1和IEL-2。在这两个数据集上,基于语义嵌入增强的SECEL模型相比基于单词嵌入的基线实现了普遍的超越。表现最好的参数配置下,SECEL在两个数据集上,F1分别取得了2.68%和4.2%的改善。上述结果表明,我们设计的图聚类算法具有较好的捕获和区分多义单词的不同语义的能力;而在这种语义嵌入的基础上实现的实体链接模型普遍在召回率和精度上比单词嵌入要好。
5、 结论(Conclusions)
语义嵌入对比单词嵌入实现的改进,说明针对实体链接过程中的语义计算,尤其是在语义单一的一些领域内的实体链接,考虑内部单词的多义性并且进行有效的区分是很有意义的。此类问题不仅出现在实体链接领域,其他的需要进行向量化语义计算操作,且需要排除多义性的任务上也可以考虑引入一个语义嵌入来进行语义消歧从而提高语义计算的精确度。也就是说,通过一定的调整,SECEL也可以用于其他领域的实体链接,例如医学领域等。未来,我们计划进一步开发IEL数据集,使其更加完善且具有代表性,同时改进SECEL模型,推动其在工业制造领域内的实体链接的发展和应用。

关键词: 自然语言处理, 实体链接, 计算语言学, 单词语义消歧, 知识图谱

Abstract: Entity linking refers to linking a string in a text to corresponding entities in a knowledge base through candidate entity generation and candidate entity ranking. It is of great significance to some NLP (natural language processing) tasks, such as question answering. Unlike English entity linking, Chinese entity linking requires more consideration due to the lack of spacing and capitalization in text sequences and the ambiguity of characters and words, which is more evident in certain scenarios. In Chinese domains, such as industry, the generated candidate entities are usually composed of long strings and are heavily nested. In addition, the meanings of the words that make up industrial entities are sometimes ambiguous. Their semantic space is a subspace of the general word embedding space, and thus each entity word needs to get its exact meanings. Therefore, we propose two schemes to achieve better Chinese entity linking. First, we implement an n-gram based candidate entity generation method to increase the recall rate and reduce the nesting noise. Then, we enhance the corresponding candidate entity ranking mechanism by introducing sense embedding. Considering the contradiction between the ambiguity of word vectors and the single sense of the industrial domain, we design a sense embedding model based on graph clustering, which adopts an unsupervised approach for word sense induction and learns sense representation in conjunction with context. We test the embedding quality of our approach on classical datasets and demonstrate its disambiguation ability in general scenarios. We confirm that our method can better learn candidate entities’ fundamental laws in the industrial domain and achieve better performance on entity linking through experiments.

Key words: natural language processing (NLP), domain entity linking, computational linguistics, word sense disambiguation, knowledge graph

<table class="reference-tab" style="background-color:#FFFFFF;width:914.104px;color:#333333;font-family:Calibri, Arial, 微软雅黑, "font-size:16px;"> <tbody> <tr class="document-box" id="b1"> <td valign="top" class="td1"> [1] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sun C C, Shen D R. Mixed hierarchical networks for deep entity matching. <i>Journal of Computer Science and Technology</i>, 2021, 36(4): 822–838. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11390-021-1321-0" target="_blank">10.1007/s11390-021-1321-0</a>. </div> </td> </tr> <tr class="document-box" id="b2"> <td valign="top" class="td1"> [2] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Li B Z, Min S, Iyer S, Mehdad Y, Yin W T. Efficient one-pass end-to-end entity linking for questions. In <i>Proc</i>. <i>the 2020 Conference on Empirical Methods in Natural Language Processing</i>, Nov. 2020, pp.6433–6441. DOI: <a href="http://dx.doi.org/10.18653/v1/2020.emnlp-main.522">10.18653/v1/2020.emnlp-main.522</a>. </div> </td> </tr> <tr class="document-box" id="b3"> <td valign="top" class="td1"> [3] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chen K, Shen G H, Huang Z Q, Wang H J. Improved entity linking for simple question answering over knowledge graph. <i>International Journal of Software Engineering and Knowledge Engineering</i>, 2021, 31(1): 55–80. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1142/S0218194021400039" target="_blank">10.1142/S0218194021400039</a>. </div> </td> </tr> <tr class="document-box" id="b4"> <td valign="top" class="td1"> [4] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Amplayo R K, Lim S, Hwang S W. Entity commonsense representation for neural abstractive summarization. In <i>Proc</i>. <i>the 2018 Conference of the North American Chapter of the Association for Computational Linguistics</i>: <i>Human Language Technologies</i>, Jun. 2018, pp.697–707. DOI: <a href="http://dx.doi.org/10.18653/v1/N18-1064">10.18653/v1/N18-1064</a>. </div> </td> </tr> <tr class="document-box" id="b5"> <td valign="top" class="td1"> [5] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Shen W, Wang J Y, Han J W. Entity linking with a knowledge base: Issues, techniques, and solutions. <i>IEEE Trans. Knowledge and Data Engineering</i>, 2015, 27(2): 443–460. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TKDE.2014.2327028" target="_blank">10.1109/TKDE.2014.2327028</a>. </div> </td> </tr> <tr class="document-box" id="b6"> <td valign="top" class="td1"> [6] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Li M Y, Xing Y Q, Kong F, Zhou G D. Towards better entity linking. <i>Frontiers of Computer Science</i>, 2022, 16(2): 162308. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11704-020-0192-9" target="_blank">10.1007/s11704-020-0192-9</a>. </div> </td> </tr> <tr class="document-box" id="b7"> <td valign="top" class="td1"> [7] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Fu J L, Qiu J, Guo Y L, Li L. Entity linking and name disambiguation using SVM in Chinese micro-blogs. In <i>Proc</i>. <i>the 11th International Conference on Natural Computation</i>, Aug. 2015, pp.468–472. DOI: <a href="http://dx.doi.org/10.1109/ICNC.2015.7378034">10.1109/ICNC.2015.7378034</a>. </div> </td> </tr> <tr class="document-box" id="b8"> <td valign="top" class="td1"> [8] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huang D C, Wang J L. An approach on Chinese microblog entity linking combining Baidu encyclopaedia and word2vec. <i>Procedia Computer Science</i>, 2017, 111: 37–45. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.procs.2017.06.007" target="_blank">10.1016/j.procs.2017.06.007</a>. </div> </td> </tr> <tr class="document-box" id="b9"> <td valign="top" class="td1"> [9] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Zeng W X, Tang J Y, Zhao X. Entity linking on Chinese microblogs via deep neural network. <i>IEEE Access</i>, 2018, 6: 25908–25920. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/ACCESS.2018.2833153" target="_blank">10.1109/ACCESS.2018.2833153</a>. </div> </td> </tr> <tr class="document-box" id="b10"> <td valign="top" class="td1"> [10] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ma C F, Sha Y, Tan J L, Guo L, Peng H L. Chinese social media entity linking based on effective context with topic semantics. In <i>Proc</i>. <i>the 43rd Annual Computer Software and Applications Conference</i>, Jul. 2019, pp.386–395. DOI: <a href="http://dx.doi.org/10.1109/COMPSAC.2019.00063">10.1109/COMPSAC.2019.00063</a>. </div> </td> </tr> <tr class="document-box" id="b11"> <td valign="top" class="td1"> [11] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system. In <i>Proc</i>. <i>the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining</i>, Aug. 2016, pp.785–794. DOI: <a href="http://dx.doi.org/10.1145/2939672.2939785">10.1145/2939672.2939785</a>. </div> </td> </tr> <tr class="document-box" id="b12"> <td valign="top" class="td1"> [12] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Moro A, Raganato A, Navigli R. Entity linking meets word sense disambiguation: A unified approach. <i>Trans. Association for Computational Linguistics</i>, 2014, 2: 231–244. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1162/tacl_a_00179" target="_blank">10.1162/tacl_a_00179</a>. </div> </td> </tr> <tr class="document-box" id="b13"> <td valign="top" class="td1"> [13] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Khosrovian K, Pfahl D, Garousi V. GENSIM 2.0: A customizable process simulation model for software process evaluation. In <i>Proc</i>. <i>the 2008 International Conference on Software Process</i>, May 2008, pp.294–306. DOI: <a href="http://dx.doi.org/10.1007/978-3-540-79588-9_26">10.1007/978-3-540-79588-9_26</a>. </div> </td> </tr> <tr class="document-box" id="b14"> <td valign="top" class="td1"> [14] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Hochreiter S, Schmidhuber J. Long short-term memory. <i>Neural Computation</i>, 1997, 9(8): 1735–1780. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1162/neco.1997.9.8.1735" target="_blank">10.1162/neco.1997.9.8.1735</a>. </div> </td> </tr> <tr class="document-box" id="b15"> <td valign="top" class="td1"> [15] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Phan M C, Sun A X, Tay Y, Han J L, Li C L. NeuPL: Attention-based semantic matching and pair-linking for entity disambiguation. In <i>Proc</i>. <i>the 2017 ACM Conference on Information and Knowledge Management</i>, Nov. 2017, pp.1667–1676. DOI: <a href="http://dx.doi.org/10.1145/3132847.3132963">10.1145/3132847.3132963</a>. </div> </td> </tr> <tr class="document-box" id="b16"> <td valign="top" class="td1"> [16] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Zeng W X, Zhao X, Tang J Y, Tan Z, Huang X Q. CLEEK: A Chinese long-text corpus for entity linking. In <i>Proc</i>. <i>the 12th Language Resources and Evaluation Conference</i>, May 2020, pp.2026–2035. DOI: <a href="http://dx.doi.org/10.1145/3132847.3132963">10.1145/3132847.3132963</a>. </div> </td> </tr> <tr class="document-box" id="b17"> <td valign="top" class="td1"> [17] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Lei K, Zhang B, Liu Y, Deng Y, Zhang D Y, Shen Y. A knowledge graph based solution for entity discovery and linking in open-domain questions. In <i>Proc</i>. <i>the 2nd International Conference on Smart Computing and Communication</i>, Dec. 2017, pp.181–190. DOI: <a href="http://dx.doi.org/10.1007/978-3-319-73830-7_19">10.1007/978-3-319-73830-7_19</a>. </div> </td> </tr> <tr class="document-box" id="b18"> <td valign="top" class="td1"> [18] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Inan E, Dikenelli O. A sequence learning method for domain-specific entity linking. In <i>Proc</i>. <i>the 7th Named Entities Workshop</i>, Jul. 2018, pp.14–21. DOI: <a href="http://dx.doi.org/10.18653/v1/W18-2403">10.18653/v1/W18-2403</a>. </div> </td> </tr> <tr class="document-box" id="b19"> <td valign="top" class="td1"> [19] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Logeswaran L, Chang M W, Lee K, Toutanova K, Devlin J, Lee H. Zero-shot entity linking by reading entity descriptions. In <i>Proc</i>. <i>the 57th Annual Meeting of the Association for Computational Linguistics</i>, Jul. 2019, pp.3449–3460. DOI: <a href="http://dx.doi.org/10.18653/v1/P19-1335">10.18653/v1/P19-1335</a>. </div> </td> </tr> <tr class="document-box" id="b20"> <td valign="top" class="td1"> [20] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chen L H, Varoquaux G, Suchanek F M. A lightweight neural model for biomedical entity linking. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2021, 35(14): 12657–12665. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1609/aaai.v35i14.17499" target="_blank">10.1609/aaai.v35i14.17499</a>. </div> </td> </tr> <tr class="document-box" id="b21"> <td valign="top" class="td1"> [21] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Dong Z D, Dong Q, Hao C L. HowNet and its computation of meaning. In <i>Proc</i>. <i>the 23rd International Conference on Computational Linguistics</i>: <i>Demonstrations</i>, Aug. 2010, pp.53–56. DOI: <a href="http://dx.doi.org/10.5555/1944284.1944298" target="_blank">10.5555/1944284.1944298</a>. </div> </td> </tr> <tr class="document-box" id="b22"> <td valign="top" class="td1"> [22] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Miller G A. WordNet: A lexical database for English. <i>Communications of the ACM</i>, 1995, 38(11): 39–41. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1145/219717.219748" target="_blank">10.1145/219717.219748</a>. </div> </td> </tr> <tr class="document-box" id="b23"> <td valign="top" class="td1"> [23] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Pilehvar M T, Collier N. De-conflated semantic representations. In <i>Proc</i>. <i>the 2016 Conference on Empirical Methods in Natural Language Processing</i>, Nov. 2016, pp.1680–1690. DOI: <a href="http://dx.doi.org/10.18653/v1/D16-1174">10.18653/v1/D16-1174</a>. </div> </td> </tr> <tr class="document-box" id="b24"> <td valign="top" class="td1"> [24] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Lee Y Y, Yen T Y, Huang H H, Shiue Y T, Chen H H. GenSense: A generalized sense retrofitting model. In <i>Proc</i>. <i>the 27th International Conference on Computational Linguistics</i>, Aug. 2018, pp.1662-1671. </div> </td> </tr> <tr class="document-box" id="b25"> <td valign="top" class="td1"> [25] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ramprasad S, Maddox J. CoKE: Word sense induction using contextualized knowledge embeddings. In <i>Proc</i>. <i>the 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering</i>, Mar. 2019. </div> </td> </tr> <tr class="document-box" id="b26"> <td valign="top" class="td1"> [26] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Scarlini B, Pasini T, Navigli R. SensEmBERT: Context-enhanced sense embeddings for multilingual word sense disambiguation. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2020, 34(5): 8758–8765. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1609/aaai.v34i05.6402" target="_blank">10.1609/aaai.v34i05.6402</a>. </div> </td> </tr> <tr class="document-box" id="b27"> <td valign="top" class="td1"> [27] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Eyal M, Sadde S, Taub-Tabib H, Goldberg Y. Large scale substitution-based word sense induction. In <i>Proc</i>. <i>the 60th Annual Meeting of the Association for Computational Linguistics</i>, May 2022, pp.4738–4752. DOI: <a href="http://dx.doi.org/10.18653/v1/2022.acl-long.325">10.18653/v1/2022.acl-long.325</a>. </div> </td> </tr> <tr class="document-box" id="b28"> <td valign="top" class="td1"> [28] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Neelakantan A, Shankar J, Passos A, McCallum A. Efficient non-parametric estimation of multiple embeddings per word in vector space. In <i>Proc</i>. <i>the 2014 Conference on Empirical Methods in Natural Language Processing</i>, Oct. 2014, pp.1059–1069. DOI: <a href="http://dx.doi.org/10.3115/v1/D14-1113">10.3115/v1/D14-1113</a>. </div> </td> </tr> <tr class="document-box" id="b29"> <td valign="top" class="td1"> [29] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Pelevina M, Arefiev N, Biemann C, Panchenko A. Making sense of word embeddings. In <i>Proc</i>. <i>the 1st Workshop on Representation Learning for NLP</i>, Aug. 2016, pp.174–183. DOI: <a href="http://dx.doi.org/10.18653/v1/W16-1620">10.18653/v1/W16-1620</a>. </div> </td> </tr> <tr class="document-box" id="b30"> <td valign="top" class="td1"> [30] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chang H S, Agrawal A, Ganesh A, Desai A, Mathur V, Hough A, McCallum A. Efficient graph-based word sense induction by distributional inclusion vector embeddings. In <i>Proc</i>. <i>the 12th Workshop on Graph-Based Methods for Natural Language Processing</i>, Jun. 2018, pp.38–48. DOI: <a href="http://dx.doi.org/10.18653/v1/W18-1706">10.18653/v1/W18-1706</a>. </div> </td> </tr> <tr class="document-box" id="b31"> <td valign="top" class="td1"> [31] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Han S Z, Shirai K. Unsupervised word sense disambiguation based on word embedding and collocation. In <i>Proc</i>. <i>the 13th International Conference on Agents and Artificial Intelligence</i>, Feb. 2021, pp.1218–1225. DOI: <a href="http://dx.doi.org/10.5220/0010380112181225">10.5220/0010380112181225</a>. </div> </td> </tr> <tr class="document-box" id="b32"> <td valign="top" class="td1"> [32] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chen H H, Jin H. Finding and evaluating the community structure in semantic peer-to-peer overlay networks. <i>Science China Information Sciences</i>, 2011, 54(7): 1340–1351. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11432-011-4296-6" target="_blank">10.1007/s11432-011-4296-6</a>. </div> </td> </tr> <tr class="document-box" id="b33"> <td valign="top" class="td1"> [33] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Gao W, Wong K F, Xia Y Q, Xu R F. Clique percolation method for finding naturally cohesive and overlapping document clusters. In <i>Proc</i>. <i>the 21st International Conference on Computer Processing of Oriental Languages</i>, Dec. 2006, pp.97–108. DOI: <a href="http://dx.doi.org/10.1007/11940098_10">10.1007/11940098_10</a>. </div> </td> </tr> <tr class="document-box" id="b34"> <td valign="top" class="td1"> [34] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Gibbons T R, Mount S M, Cooper E D, Delwiche C F. Evaluation of BLAST-based edge-weighting metrics used for homology inference with the Markov Clustering algorithm. <i>BMC Bioinformatics</i>, 2015, 16: 218. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1186/s12859-015-0625-x" target="_blank">10.1186/s12859-015-0625-x</a>. </div> </td> </tr> <tr class="document-box" id="b35"> <td valign="top" class="td1"> [35] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Brin S, Page L. Reprint of: The anatomy of a large-scale hypertextual web search engine. <i>Computer Networks</i>, 2012, 56(18): 3825–3833. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.comnet.2012.10.007" target="_blank">10.1016/j.comnet.2012.10.007</a>. </div> </td> </tr> <tr class="document-box" id="b36"> <td valign="top" class="td1"> [36] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Yoshua B, Olivier D, Nicolas Le R. Label propagation and quadratic criterion. <i>Semi-Supervised Learning</i>, 2006: 192–216. DOI: <a href="http://dx.doi.org/10.7551/mitpress/9780262033589.003.0011">10.7551/mitpress/9780262033589.003.0011</a>. </div> </td> </tr> <tr class="document-box" id="b37"> <td valign="top" class="td1"> [37] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Serban O, Castellano G, Pauchet A, Rogozan A, Pecuchet J P. Fusion of smile, valence and NGram features for automatic affect detection. In <i>Proc</i>. <i>the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction</i>, Sept. 2013, pp.264–269. DOI: <a href="http://dx.doi.org/10.1109/ACE285A1.2013.50">10.1109/ACⅡ.2013.50</a>. </div> </td> </tr> <tr class="document-box" id="b38"> <td valign="top" class="td1"> [38] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Jin H, Zhang Z B, Yuan P P. Improving Chinese word representation using four corners features. <i>IEEE Trans. Big Data</i>, 2022, 8(4): 982–993. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TBDATA.2021.3106582" target="_blank">10.1109/TBDATA.2021.3106582</a>. </div> </td> </tr> <tr class="document-box" id="b39"> <td valign="top" class="td1"> [39] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huang E H, Socher R, Manning C D, Ng A Y. Improving word representations via global context and multiple word prototypes. In <i>Proc</i>. <i>the 50th Annual Meeting of the Association for Computational Linguistics</i>, Jul. 2012, pp.873-882. </div> </td> </tr> <tr class="document-box" id="b40"> <td valign="top" class="td1"> [40] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Biemann C. Turk bootstrap word sense inventory 2.0: A large-scale resource for lexical substitution. In <i>Proc</i>. <i>the 8th International Conference on Language Resources and Evaluation</i>, May 2012, pp.4038-4042. </div> </td> </tr> <tr class="document-box" id="b41"> <td valign="top" class="td1"> [41] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Pennington J, Socher R, Manning C. GloVe: Global vectors for word representation. In <i>Proc</i>. <i>the 2014 Conference on Empirical Methods in Natural Language Processing</i>, Oct. 2014, pp.1532–1543. DOI: <a href="http://dx.doi.org/10.3115/v1/D14-1162">10.3115/v1/D14-1162</a>. </div> </td> </tr> <tr class="document-box" id="b42"> <td valign="top" class="td1"> [42] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ilić S, Marrese-Taylor E, Balazs J A, Matsuo Y. Deep contextualized word representations for detecting sarcasm and irony. In <i>Proc</i>. <i>the 9th Workshop on Computational Approaches to Subjectivity</i>, <i>Sentiment and Social Media Analysis</i>, Oct. 2018, pp.2–7. DOI: <a href="http://dx.doi.org/10.18653/v1/w18-6202">10.18653/v1/w18-6202</a>. </div> </td> </tr> <tr class="document-box" id="b43"> <td valign="top" class="td1"> [43] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Liu Y J, Che W X, Wang Y X, Zheng B, Qin B, Liu T. Deep contextualized word embeddings for universal dependency parsing. <i>ACM Trans</i>. <i>Asian and Low-Resource Language Information Processing</i>, 2020, 19(1): 9. DOI: <a href="http://dx.doi.org/10.1145/3326497">10.1145/3326497</a>. </div> </td> </tr> </tbody> </table>
[1] Fu-Rong Dang, Jin-Tao Tang, Kun-Yuan Pang, Ting Wang, Sha-Sha Li, Xiao Li. 构建一个教育领域知识图谱并将知识点链接到维基百科[J]. 计算机科学技术学报, 2021, 36(5): 1200-1211.
[2] Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. 基于深度学习的文本摘要研究综述[J]. 计算机科学技术学报, 2021, 36(3): 633-663.
[3] Yi-Ting Wang, Jie Shen, Zhi-Xu Li, Qiang Yang, An Liu, Peng-Peng Zhao, Jia-Jie Xu, Lei Zhao, Xun-Jie Yang. 基于搜索引擎丰富上下文信息的实体链接方法[J]. 计算机科学技术学报, 2020, 35(4): 724-738.
[4] Ying Li, Jia-Jie Xu, Peng-Peng Zhao, Jun-Hua Fang, Wei Chen, Lei Zhao. ATLRec:用于跨领域推荐的注意力对抗迁移学习网络[J]. 计算机科学技术学报, 2020, 35(4): 794-808.
[5] Xiang-Guang Zhou, Ren-Bin Gong, Fu-Geng Shi, Zhe-Feng Wang. 中石油勘探开发知识图谱的构建与应用[J]. 计算机科学技术学报, 2020, 35(2): 368-378.
[6] Ji-Zhao Zhu, Yan-Tao Jia, Jun Xu, Jian-Zhong Qiao, Xue-Qi Cheng. 一种利用关系相关性的知识图谱表示方法[J]. , 2018, 33(2): 323-334.
[7] Ze-Qi Lin, Bing Xie, Yan-Zhen Zou, Jun-Feng Zhao, Xuan-Dong Li, Jun Wei, Hai-Lo. 智能开发环境与软件知识图谱[J]. , 2017, 32(2): 242-249.
[8] Fei Tian, Bin Gao, En-Hong Chen, Tie-Yan Liu. 基于知识图谱非对称映射的单词嵌入方法[J]. , 2016, 31(3): 624-634.
[9] Xiang-Lilan Zhang, Zhi-Gang Luo, Ming Li. 合并-权重动态时间规整算法及其语音识别中的应用[J]. , 2014, 29(6): 1072-1082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周笛;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] 李未;. A Structural Operational Semantics for an Edison Like Language(2)[J]. , 1986, 1(2): 42 -53 .
[3] 李万学;. Almost Optimal Dynamic 2-3 Trees[J]. , 1986, 1(2): 60 -71 .
[4] 刘明业; 洪恩宇;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[5] C.Y.Chung; 华宣仁;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[6] 孙钟秀; 商陆军;. DMODULA:A Distributed Programming Language[J]. , 1986, 1(2): 25 -31 .
[7] 陈世华;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[8] 高庆狮; 张祥; 杨树范; 陈树清;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[9] 金兰; 杨元元;. A Modified Version of Chordal Ring[J]. , 1986, 1(3): 15 -32 .
[10] 潘启敬;. A Routing Algorithm with Candidate Shortest Path[J]. , 1986, 1(3): 33 -52 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: