›› 2017,Vol. 32 ›› Issue (6): 1186-1197.doi: 10.1007/s11390-017-1793-0

所属专题: Computer Graphics and Multimedia

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

基于隐式不可压缩SPH的流体表面张力模型

Xiao-Kun Wang, Member, CCF, Xiao-Juan Ban*, Member, CCF, Ya-Lan Zhang, Si-Nuo Liu, Peng-Fei Ye   

  1. 1 School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2 Beijing Key Laboratory of Knowledge Engineering for Material Science, Beijing 100083, China
  • 收稿日期:2017-06-23 修回日期:2017-09-28 出版日期:2017-11-05 发布日期:2017-11-05
  • 通讯作者: Xiao-Juan Ban E-mail:zkpan@qdu.edu.cn
  • 作者简介:Xiao-Kun Wang received his Ph.D.degree in computer science and technology from University of Science and Technology Beijing,Beijing,in 2017.Currently,he is a postdoctoral researcher and lecturer at University of Science and Technology Beijing,Beijing.His research interests include computer graphics and virtual reality.
  • 基金资助:

    This work was supported by the National Natural Science Foundation of China under Grant Nos. 61572075 and 61702036, the National Key Research and Development Program of China under Grant Nos. 2016YFB0700502 and 2016YFB1001404, and the Fundamental Research Funds for the Central Universities of China under Grant No. 2302017FRF-TP-17-012A1.

Surface Tension Model Based on Implicit Incompressible Smoothed Particle Hydrodynamics for Fluid Simulation

Xiao-Kun Wang, Member, CCF, Xiao-Juan Ban*, Member, CCF, Ya-Lan Zhang, Si-Nuo Liu, Peng-Fei Ye   

  1. 1 School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2 Beijing Key Laboratory of Knowledge Engineering for Material Science, Beijing 100083, China
  • Received:2017-06-23 Revised:2017-09-28 Online:2017-11-05 Published:2017-11-05
  • Contact: Xiao-Juan Ban E-mail:zkpan@qdu.edu.cn
  • About author:Xiao-Kun Wang received his Ph.D.degree in computer science and technology from University of Science and Technology Beijing,Beijing,in 2017.Currently,he is a postdoctoral researcher and lecturer at University of Science and Technology Beijing,Beijing.His research interests include computer graphics and virtual reality.
  • Supported by:

    This work was supported by the National Natural Science Foundation of China under Grant Nos. 61572075 and 61702036, the National Key Research and Development Program of China under Grant Nos. 2016YFB0700502 and 2016YFB1001404, and the Fundamental Research Funds for the Central Universities of China under Grant No. 2302017FRF-TP-17-012A1.

为了获取更稳定和真实的流体表面微观特性,本文提出了一种基于隐式不可压缩SPH的表面张力和吸附力方法。该方法给出了稳定和快速的表面张力模型而且解决了未考虑吸附力的问题。表面张力模型考虑分子聚力与斥力和表面区域最小化两种作用,同时加入吸附力来更好的展现表面的微观特性。表面张力与吸附力模型与隐式不可压缩SPH算法相结合,提高了模拟的稳定性与效率。实验结果表明,该方法在多种场景均能较好的表现流体的表面特性,同时兼顾了时间效率和稳定性。

Abstract: In order to capture stable and realistic microscopic features of fluid surface, a surface tension and adhesion method based on implicit incompressible SPH (smoothed particle hydrodynamics) is presented in this paper. It gives a steady and fast tension model and can solve the problem of not considering adhesion. Molecular cohesion and surface minimization are considered for surface tension, and adhesion is added to show the microscopic characteristics of the surface. To simulate surface tension and adhesion stably and efficiently, the surface tension and adhesion model is integrated to an implicit incompressible SPH method. The experimental results show that the method can better simulate surface features in a variety of scenarios compared with previous methods and meanwhile ensure stability and efficiency.

[1] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2):335-354.

[2] Morris J P. Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2000, 33(3):333-353.

[3] Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In Proc. the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2003, pp.154-159.

[4] Müller M, Solenthaler B, Keiser R et al. Particle-based fluid-fluid interaction. In Proc. the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2005, pp.591-594.

[5] Nugent S, Posch H A. Liquid drops and surface tension with smoothed particle applied mechanics. Physical Review E, 2000, 62(4):4968-4975.

[6] Becker M, Teschner M. Weakly compressible SPH for free surface flows. In Proc. the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Aug. 2007, pp.209-217.

[7] Tartakovsky A, Meakin P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E, 2005, 72(2):254-271.

[8] Akinci N, Akinci G, Teschner M. Versatile surface tension and adhesion for SPH fluids. ACM Transactions on Graphics, 2013, 32(6):Article No. 182.

[9] Clavet S, Beaudoin P, Poulin P. Particle based viscoelastic fluid simulation. In Proc. the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2005, pp.219-228.

[10] Yu J, Wojtan C, Turk G et al. Explicit mesh surfaces for particle based fluids. Computer Graphics Forum, 2012, 31(2):815-824.

[11] Steele K, Cline D, Egbert P K et al. Modeling and rendering viscous liquids. Computer Animation & Virtual Worlds, 2004, 15(3/4):183-192.

[12] Schechter H, Bridson R. Ghost SPH for animating water. ACM Transactions on Graphics, 2012, 31(4):Article No. 61.

[13] He X, Liu N, Wang G et al. Staggered meshless solid-fluid coupling. ACM Transactions on Graphics, 2012, 31(6):439-445.

[14] Liu G R, Liu M B. Smoothed Particle Hydrodynamics:A Meshfree Particle Method. World Scientific, 2004

[15] Akinci N, Ihmsen M, Akinci G et al. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics, 2012, 31(4):Article No. 62.

[16] Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Transactions on Graphics, 2009, 28(3):341-352.

[17] Bodin K, Lacoursiere C, Servin M. Constraint fluids. IEEE Transactions on Visualization & Computer Graphics, 2012, 18(3):516-526.

[18] Cummins S J, Rudman M. An SPH projection method. Journal of Computational Physics, 1999, 152(2):584-607.

[19] Prem?oe S, Tasdizen T, Bigler J et al. Particle-based simulation of fluids. Computer Graphics Forum, 22(3):401-410.

[20] Losasso F, Talton J O, Kwatra N et al. Two-way coupled SPH and particle level set fluid simulation. IEEE Transactions on Visualization & Computer Graphics, 2008, 14(4):797-804.

[21] Ihmsen M, Cornelis J, Solenthaler B et al. Implicit incompressible SPH. IEEE Transactions on Visualization & Computer Graphics, 2014, 20(3):426-435.

[22] Yang T, Lin M C, Martin R R et al. Versatile interactions at interfaces for SPH-based simulations. In Proc. ACM Siggraph/Eurographics Symposium on Computer Animation, July 2016, pp.57-66.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘明业; 洪恩宇;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] 陈世华;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] 高庆狮; 张祥; 杨树范; 陈树清;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] 陈肇雄; 高庆狮;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] 黄河燕;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] 闵应骅; 韩智德;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[7] 唐同诰; 招兆铿;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[8] 闵应骅;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[9] 朱鸿;. Some Mathematical Properties of the Functional Programming Language FP[J]. , 1987, 2(3): 202 -216 .
[10] 李明慧;. CAD System of Microprogrammed Digital Systems[J]. , 1987, 2(3): 226 -235 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: