›› 2018,Vol. 33 ›› Issue (3): 475-486.doi: 10.1007/s11390-018-1832-5

所属专题: Artificial Intelligence and Pattern Recognition Computer Graphics and Multimedia

• • 上一篇    下一篇

基于运动几何的视频抖动检测

Xiao-Qun Wu, Member, CCF, Hai-Sheng Li, Member, CCF, Member, IEEE, Jian Cao, Member, CCF, Qiang Cai, Senior Member, CCF, Member, IEEE   

  1. School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University Beijing 100048, China
  • 收稿日期:2018-01-04 修回日期:2018-03-23 出版日期:2018-05-05 发布日期:2018-05-05
  • 通讯作者: Xiao-Wu Chen E-mail:chen@buaa.edu.cn
  • 作者简介:Xiao-Qun Wu is now a lecturer in the School of Computer and Information Engineering, Beijing Technology and Business University, Beijing. She received her B.S. and M.S. degrees in mathematics from Zhejiang University, Hangzhou, in 2007 and 2009, respectively, and her Ph.D. degree in computer science from Nanyang Technological University, Singapore, in 2014. Her research focuses on computer graphics, multimedia processing and applications.
  • 基金资助:

    This work was partially supported by the National Natural Science Foundation of China under Grant No. 61602015, the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems at Beihang University under Grant No. BUAAVR-16KF-06, Beijing Natural Science Foundation under Grant No. 4162019, and the Research Foundation for Young Scholars of Beijing Technology and Business University.

Geometry of Motion for Video Shakiness Detection

Xiao-Qun Wu, Member, CCF, Hai-Sheng Li, Member, CCF, Member, IEEE, Jian Cao, Member, CCF, Qiang Cai, Senior Member, CCF, Member, IEEE   

  1. School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University Beijing 100048, China
  • Received:2018-01-04 Revised:2018-03-23 Online:2018-05-05 Published:2018-05-05
  • Contact: Xiao-Wu Chen E-mail:chen@buaa.edu.cn
  • About author:Xiao-Qun Wu is now a lecturer in the School of Computer and Information Engineering, Beijing Technology and Business University, Beijing. She received her B.S. and M.S. degrees in mathematics from Zhejiang University, Hangzhou, in 2007 and 2009, respectively, and her Ph.D. degree in computer science from Nanyang Technological University, Singapore, in 2014. Her research focuses on computer graphics, multimedia processing and applications.
  • Supported by:

    This work was partially supported by the National Natural Science Foundation of China under Grant No. 61602015, the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems at Beihang University under Grant No. BUAAVR-16KF-06, Beijing Natural Science Foundation under Grant No. 4162019, and the Research Foundation for Young Scholars of Beijing Technology and Business University.

本文提出了一种用于自动检测临时视频中的全局抖动的新算法。基于由帧间几何变换定义的运动学模型,每帧幅度通过运动几何来计算。受运动感知的启发,我们研究人类视觉系统感知到的抖动运动的明显幅度。然后,我们使用阈值对比策略对每帧幅度进行统计,以确定感知到的抖动的发生。为了测试检测的准确性,本文同时提供了以手工抖动标签为基础构建的视频剪辑的数据集。实验证明,该算法可以获得较好的检测精度,与数据集中视频的主观判断相一致。

Abstract: This paper presents a novel algorithm for automatically detecting global shakiness in casual videos. Per-frame amplitude is computed by the geometry of motion, based on the kinematic model defined by inter-frame geometric transformations. Inspired by motion perception, we investigate the just-noticeable amplitude of shaky motion perceived by human visual system. Then, we use the thresholding contrast strategy on the statistics of per-frame amplitudes to determine the occurrence of perceived shakiness. For testing the detection accuracy, a dataset of video clips is constructed with manual shakiness label as the ground truth. The experiments demonstrate that our algorithm can obtain good detection accuracy that is in concordance with subjective judgement on the videos in the dataset.

[1] Abdollahian G, Taskiran C M, Pizlo Z, Delp E J. Camera motion-based analysis of user generated video. IEEE Trans. Multimedia, 2010, 12(1):28-41.

[2] Hu S M, Chen T, Xu K, Cheng M M, Martin R R. Internet visual media processing:A survey with graphics and vision applications. The Visual Computer, 2013, 29(5):393-405.

[3] Zhang L, Zhou L, Huang H. Bundled kernels for nonuniform blind video deblurring. IEEE Trans. Circuits and Systems for Video Technology, 2017, 27(9):1882-1894.

[4] Yan F, Iliyasu A M, Yang H M, Hirota K. Strategy for quantum image stabilization. Science China Information Sciences, 2016, 59(5):052102.

[5] Kakar P, Sudha N, Ser W. Exposing digital image forgeries by detecting discrepancies in motion blur. IEEE Trans. Multimedia, 2011, 13(3):443-452.

[6] Su B L, Lu S J, Tan C L. Blurred image region detection and classification. In Proc. the 19th ACM Int. Conf. Multimedia, November 2011, pp.1397-1400.

[7] Yu X, Xu F, Zhang S L, Zhang L. Efficient patch-wise nonuniform deblurring for a single image. IEEE Trans. Multimedia, 2014, 16(6):1510-1524.

[8] Visentini-Scarzanella M, Dragotti P L. Video jitter analysis for automatic bootleg detection. In Proc. the 14th Int. Workshop on Multi-Media Signal Processing, September 2012, pp.101-106.

[9] Sibiryakov A. Hand jitter descriptor for mobile video identification. In Proc. Int. Conf. Consumer Electronics, January 2011, pp.77-78.

[10] Chen H H, Liang C K, Peng Y C, Chang H A. Integration of digital stabilizer with video codec for digital video cameras. IEEE Trans. Circuits and Systems for Video Technology, 2007, 17(7):801-813.

[11] Xue Y Y, Erkin B, Wang Y. A novel no-reference video quality metric for evaluating temporal jerkiness due to frame freezing. IEEE Trans. Multimedia, 2015, 17(1):134-139.

[12] Yan B, Yuan B H, Yang B. Effective video retargeting with jittery assessment. IEEE Trans. Multimedia, 2014, 16(1):272-277.

[13] Zhang F L, Wang J, Zhao H, Martin R R, Hu S M. Simultaneous camera path optimization and distraction removal for improving amateur video. IEEE Trans. Image Processing, 2015, 24(12):5982-5994.

[14] Zhang L, Xu Q K, Huang H. A global approach to fast video stabilization. IEEE Trans. Circuits and Systems for Video Technology, 2017, 27(2):225-235.

[15] Huang H Z, Fang X N, Ye Y F, Zhang S H, Rosin P L. Practical automatic background substitution for live video. Computational Visual Media, 2017, 3(3):273-284.

[16] Hasegawa K, Saito H. Synthesis of a stroboscopic image from a hand-held camera sequence for a sports analysis. Computational Visual Media, 2016, 2(3):277-289.

[17] Joshi N, Kienzle W, Toelle M, Uyttendaele M, Cohen M F. Real-time hyperlapse creation via optimal frame selection. ACM Trans. Graphics, 2015, 34(4):Article No. 63.

[18] Wang M, Liang J B, Zhang S H, Lu S P, Shamir A, Hu S M. Hyper-lapse from multiple spatially-overlapping videos. IEEE Trans. Image Processing, 2018, 27(4):1735-1747.

[19] Tong H H, Li M J, Zhang H J, Zhang C S. Blur detection for digital images using wavelet transform. In Proc. Int. Conf. Multimedia and Expo., June 2004, pp.17-20.

[20] Tico M, Trimeche M, Vehvilainen M. Motion blur identification based on differently exposed images. In Proc. Int. Conf. Image Processing, October 2006, pp.2021-2024.

[21] Liu R T, Li Z R, Jia J Y. Image partial blur detection and classification. In Proc. Conf. Computer Vision and Pattern Recognition, June 2008.

[22] Yan W Q, Kankanhalli M S. Detection and removal of lighting & shaking artifacts in home videos. In Proc. ACM Int. Conf. Multimedia, December 2002, pp.107-116.

[23] Liu F, Gleicher M, Jin H L, Agarwala A. Content-preserving warps for 3D video stabilization. ACM Trans. Graphics, 2009, 28(3):Article No. 44.

[24] Zhang L, Chen X Q, Kong X Y, Huang H. Geodesic video stabilization in transformation space. IEEE Trans. Image Processing, 2017, 26(5):2219-2229.

[25] Wolpert D M, Ghahramani Z. Computational principles of movement neuroscience. Nature Neuroscience, 2000, 3(Suppl):1212-1217.

[26] Murray R M, Li Z X, Sastry S S. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.

[27] Zacur E, Bossa M, Olmos S. Left-invariant Riemannian geodesics on spatial transformation groups. SIAM Journal on Imaging Sciences, 2014, 7(3):1503-1557.

[28] Duan L Y, Jin J S, Tian Q, Xu C S. Nonparametric motion characterization for robust classification of camera motion patterns. IEEE Trans. Multimedia, 2006, 8(2):323-340.

[29] Afonso M V, Nascimento J C, Marques J S. Automatic estimation of multiple motion fields from video sequences using a region matching based approach. IEEE Trans. Multimedia, 2013, 16(1):1-14.

[30] Nishi K, Onda T. Evaluation system for camera shake and image stabilizers. In Proc. Int. Conf. Multimedia and Expo., July 2010, pp.926-931.

[31] Albright T D, Stoner G R. Visual motion perception. Proceedings the National Academy of Sciences of the United States of America, 1995, 92(7):2433-2440.

[32] Peli E, García-Pérez M A. Motion perception during involuntary eye vibration. Experimental Brain Research, 2003, 149(4):431-438.

[33] Healey C G, Sawant A P. On the limits of resolution and visual angle in visualization. ACM Trans. Applied Perception, 2012, 9(4):Article No. 20.

[34] Martins A J, Kowler E, Palmer C. Smooth pursuit of smallamplitude sinusoidal motion. Journal of the Optical Society of America A, 1985, 2(2):234-242.

[35] He K M, Chang H W, Sun J. Content-aware rotation. In Proc. Int. Conf. Computer Vision, December 2013, pp.553-560.

[36] Shi J B, Tomasi C. Good features to track. In Proc. Computer Society Conf. Computer Vision and Pattern Recognition, June 1994, pp.593-600.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 沈绪榜; 马光悌; 陈岚;. An Inference Microprocessor Design[J]. , 1991, 6(3): 209 -213 .
[2] 费翔林; 廖雷; 王和珍; 汪承藻;. Structured Development Environment Based on the Object-Oriented Concepts[J]. , 1992, 7(3): 193 -201 .
[3] 沈一栋;. Form alizing Incomplete Knowledge in Incomplete Databases[J]. , 1992, 7(4): 295 -304 .
[4] 应明生;. Putting Consistent Theories Together in Institutions[J]. , 1995, 10(3): 260 -266 .
[5] 沈理;. Fuzzy Logic Control ASIC Chip[J]. , 1997, 12(3): 263 -270 .
[6] 顾静; 帅典勋;. A New Parallel-by-Cell Approach to Undistorted DataCompression Based on Cellular Automatonand Genetic Algorithm[J]. , 1999, 14(6): 572 -579 .
[7] . 为基于分类法的知识表示系统架通现实世界语义与模型世界语义之间的桥梁[J]. , 2005, 20(3): 296 -308 .
[8] . 线性码停止冗余的一个注记[J]. , 2006, 21(6): 950 -951 .
[9] . 基于模型等价归约的析取逻辑程序语义比较[J]. , 2007, 22(4): 562 -568 .
[10] Moonki Jung, Hyundeok Cho, Taehwan Roh, Kunwoo Lee. 使用数字人体模型进行车辆内部设计的集成框架开发[J]. , 2009, 24(6): 1149 -1161 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: