计算机科学技术学报 ›› 2021,Vol. 36 ›› Issue (3): 520-554.doi: 10.1007/s11390-021-1414-9

所属专题: Computer Graphics and Multimedia

• • 上一篇    下一篇

回顾形状编辑技术:从几何角度到神经网络方法

Yu-Jie Yuan1,2, Student Member, IEEE, Yukun Lai3, Member, IEEE, Tong Wu1,2, Student Member, CCF, Lin Gao1,2,*, Member, CCF, ACM, and Li-Gang Liu4, Member, CCF, ACM, IEEE   

  1. 1 Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China;
    2 University of Chinese Academy of Sciences, Beijing 100049, China;
    3 School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, U.K.;
    4 School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 收稿日期:2021-03-02 修回日期:2021-04-22 出版日期:2021-05-05 发布日期:2021-05-31
  • 通讯作者: Lin Gao E-mail:gaolin@ict.ac.cn
  • 作者简介:Yu-Jie Yuan received his Bachelor's degree in mathematics from Xi'an Jiaotong University, Xi'an, in 2018. He is currently a Ph.D. candidate in the Institute of Computing Technology, Chinese Academy of Sciences, Beijing. His research interests include computer graphics and geometric processing.
  • 基金资助:
    This work was supported by the National Natural Science Foundation of China under Grant Nos. 62061136007 and 61872440, the Royal Society Newton Advanced Fellowship under Grant No. NAF\R2\192151, Youth Innovation Promotion Association CAS, and Science and Technology Service Network Initiative, Chinese Academy of Sciences under Grant No. KFJ-STS-QYZD-2021-11-001.

A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint

Yu-Jie Yuan1,2, Student Member, IEEE, Yukun Lai3, Member, IEEE, Tong Wu1,2, Student Member, CCF, Lin Gao1,2,*, Member, CCF, ACM, and Li-Gang Liu4, Member, CCF, ACM, IEEE        

  1. 1 Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China;
    2 University of Chinese Academy of Sciences, Beijing 100049, China;
    3 School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, U.K.;
    4 School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
  • Received:2021-03-02 Revised:2021-04-22 Online:2021-05-05 Published:2021-05-31
  • Contact: Lin Gao E-mail:gaolin@ict.ac.cn
  • About author:Yu-Jie Yuan received his Bachelor's degree in mathematics from Xi'an Jiaotong University, Xi'an, in 2018. He is currently a Ph.D. candidate in the Institute of Computing Technology, Chinese Academy of Sciences, Beijing. His research interests include computer graphics and geometric processing.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China under Grant Nos. 62061136007 and 61872440, the Royal Society Newton Advanced Fellowship under Grant No. NAF\R2\192151, Youth Innovation Promotion Association CAS, and Science and Technology Service Network Initiative, Chinese Academy of Sciences under Grant No. KFJ-STS-QYZD-2021-11-001.

1、研究背景(context):
三维模型的编辑技术在电影生产,电子游戏以及计算机辅助设计等领域有着广泛的使用,它同样是计算机图形学和计算机视觉研究的热门话题。在过去的几十年里,研究者已经提出了一系列的编辑方法,使编辑过程更高效、更鲁棒。传统的变形方法由能量项得到最优的变换和权值来决定编辑后的模型形状。随着互联网上三维模型库的增多,研究者提出了数据驱动的方法来提升编辑效果。而近年来,随着深度神经网络的普及,许多基于深度学习的编辑方法在这一领域得到了发展,它们也属于数据驱动方法的一部分。从几何的角度出发,到最近活跃的基于神经网络的编辑方法,本文主要调研了近年的三维模型编辑研究工作,并将其分为可变形模型编辑方法和人造模型编辑方法,对它们进行了总结和归纳。
2、目的(Objective):
本篇综述围绕三维模型的编辑技术,以易于理解的描述,从基于几何属性或语义属性,基于代理,基于数据驱动以及基于神经网络的角度,提供各种三维模型变形或编辑方法的概述,比较。
3、方法(Method):
我们依据编辑方法切入的角度不同,将编辑方法分为基于单个模型属性(几何或语义),基于多个模型的数据驱动,基于代理驱动,以及基于神经网络四个类别。进一步地,由于可变形模型和人造模型存在一定差异,我们在基于属性、基于数据驱动和基于神经网络三个类别中将编辑方法进一步划分为针对可变形模型和针对人造模型的编辑方法。对于基于代理的编辑方法,我们对常见的两种代理,骨架和包围盒相关的编辑方法进行了总结,其中还包括了一些骨架和包围盒生成的方法。最后,我们总结了可变形模型和人造模型的编辑方法,并提出了一些未来可能的研究方向。
4、结果(Result&Findings):
总结并分析了从经典的几何视角到最近涌现的基于神经网络的三维模型编辑方法,梳理了相关方法之间的关系。最后以树状图的形式展示了三维模型编辑方法的分类以及代表性工作,并对未来可能的研究方向进行了探讨。
5、结论(Conclusions):
本篇综述围绕着三维模型的编辑方法,总结了经典方法和在神经网络上探索的方法。根据编辑先验的来源,我们将编辑方法分为四个类别,在每个类别中,我们分别围绕可变形模型和人造模型讨论了各自的编辑方法。前者一般是流形,后者一般由艺术家设计并且不是流形。最后,我们针对基于神经网络的未来可能的研究方向进行了探讨。

关键词: 网格变形, 人造模型编辑, 变形表示, 优化, 深度学习

Abstract: 3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy formulation. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which are naturally data-driven. We mainly survey recent research studies from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed.

Key words: mesh deformation, man-made model editing, deformation representation, optimization, deep learning

[1] Gao L, Yang J, Wu T, Yuan Y J, Fu H, Lai Y K, Zhang H. SDM-NET:Deep generative network for structured deformable mesh. ACM Trans. Graph., 2019, 38(6):Article No. 243. DOI:10.1145/3355089.3356488.<br />
[2] Yang J, Mo K, Lai Y K, Guibas L J, Gao L. DSMNet:Disentangled structured mesh net for controllable generation of fine geometry. arXiv:2008.05440, 2020. https://arxiv.org/abs/2008.05440,Jan.2021.<br />
[3] Chen Z, Zhang H. Learning implicit fields for generative shape modeling. In Proc. the 2019 IEEE Conference on Computer Vision and Pattern Recognition, June 2019, pp.5939-5948. DOI:10.1109/CVPR.2019.00609.<br />
[4] Xu Q, Wang W, Ceylan D, Mech R, Neumann U. DISN:Deep implicit surface network for high-quality single-view 3D reconstruction. In Proc. the 2019 Annual Conference on Neural Information Processing Systems, December 2019, pp.492-502.<br />
[5] Gao L, Zhang L X, Meng H Y, Ren Y H, Lai Y K, Kobbelt L. PRS-Net:Planar reflective symmetry detection net for 3D models. IEEE Transactions on Visualization and Computer Graphics. DOI:10.1109/TVCG.2020.3003823.<br />
[6] Shi Y, Huang J, Zhang H, Xu X, Rusinkiewicz S, Xu K. SymmetryNet:Learning to predict reflectional and rotational symmetries of 3D shapes from single-view RGB-D images. ACM Trans. Graph., 2020, 39(6):Article No. 213. DOI:10.1145/3414685.3417775.<br />
[7] Fu R, Yang J, Sun J, Zhang F L, Lai Y K, Gao L. RISA-Net:Rotation-invariant structure-aware network for fine-grained 3D shape retrieval. arXiv:2010.00973, 2020. https://arxiv.org/abs/2010.00973,Jan.2021.<br />
[8] Xu Z, Zhou Y, Kalogerakis E, Landreth C, Singh K. RigNet:Neural rigging for articulated characters. ACM Trans. Graph., 2020, 39(4):Article No. 58. DOI:10.1145/3386569.3392379.<br />
[9] Chang A X, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H, Xiao J, Yi L, Yu F. ShapeNet:An information-rich 3D model repository. arXiv:1512.03012, 2015. https://arxiv.org/abs/1512.03012,Jan.2021.<br />
[10] Mitra N J, Wand M, Zhang H, Cohen-Or D, Kim V, Huang Q X. Structure-aware shape processing. In Proc. the 2014 ACM SIGGRAPH Courses, July 2014, Article No. 13. DOI:10.1145/2614028.2615401.<br />
[11] Chaudhuri S, Ritchie D, Wu J, Xu K, Zhang H. Learning generative models of 3D structures. Computer Graphics Forum, 2020, 39(2):643-666. DOI:10.1111/cgf.14020.<br />
[12] Han X, Laga H, Bennamoun M. Image-based 3D object reconstruction:State-of-the-art and rends in the deep learning era. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5):1578-1604. DOI:10.1109/TPAMI.2019.2954885.<br />
[13] Jin Y, Jiang D, Cai M. 3D reconstruction using deep learning:A survey. Communications in Information and Systems, 2020, 20(4):389-413. DOI:10.4310/CIS.2020.v20.n4.a1.<br />
[14] Xiao Y P, Lai Y K, Zhang F L, Li C, Gao L. A survey on deep geometry learning:From a representation perspective. Computational Visual Media, 2020, 6(2):113-133. DOI:10.1007/s41095-020-0174-8.<br />
[15] Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(1):213-230. DOI:10.1109/TVCG.2007.1054.<br />
[16] Gain J, Bechmann D. A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph., 2008, 27(4):Article No. 107. DOI:10.1145/1409625.1409629.<br />
[17] Xu K, Kim V G, Huang Q, Mitra N, Kalogerakis E. Datadriven shape analysis and processing. In Proc. the 2016 SIGGRAPH Asia Courses, November 2016, Article No. 4. DOI:10.1145/2988458.2988473.<br />
[18] Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. In Proc. the 14th Annual Conference on Computer Graphics and Interactive Techniques, August 1987, pp.205-214. DOI:10.1145/37401.37427.<br />
[19] Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form shape design. In Proc. the 18th Annual Conference on Computer Graphics and Interactive Techniques, July 1991, pp.257-266. DOI:10.1145/122718.122746.<br />
[20] Welch W, Witkin A. Variational surface modeling. SIGGRAPH Comput. Graph., 1992, 26(2):157-166. DOI:10.1145/142920.134033.<br />
[21] Botsch M, Bommes D, Kobbelt L. Efficient linear system solvers for mesh processing. In Proc. the 11th IMA International Conference on Mathematics of Surfaces, September 2005, pp.62-83. DOI:10.1007/11537908_5.<br />
[22] Shi L, Yu Y, Bell N, Feng W W. A fast multigrid algorithm for mesh deformation. ACM Trans. Graph., 2006, 25(3):1108-1117. DOI:10.1145/1141911.1142001.<br />
[23] Zorin D, Schröder P, Sweldens W. Interactive multiresolution mesh editing. In Proc. the 24th Annual Conference on Computer Graphics and Interactive Techniques, August 1997, pp.259-268. DOI:10.1145/258734.258863.<br />
[24] Kobbelt L, Campagna S, Vorsatz J, Seidel H P. Interactive multi-resolution modeling on arbitrary meshes. In Proc. the 25th Annual Conference on Computer Graphics and Interactive Techniques, July 1998, pp.105-114. DOI:10.1145/280814.280831.<br />
[25] Guskov I, Sweldens W, Schröder P. Multiresolution signal processing for meshes. In Proc. the 26th Annual Conference on Computer Graphics and Interactive Techniques, July 1999, pp.325-334. DOI:10.1145/311535.311577.<br />
[26] Botsch M, Sumner R, Pauly M, Gross M. Deformation transfer for detail-preserving surface editing. In Proc. the 11th International Fall Workshop Vision, Modeling & Visualization, November 2006, pp.357-364.<br />
[27] Botsch M, Kobbelt L. An intuitive framework for real-time freeform modeling. ACM Trans. Graph., 2004, 23(3):630-634. DOI:10.1145/1015706.1015772.<br />
[28] Liu H T D, Jacobson A. Cubic stylization. ACM Trans. Graph., 2019, 38(6):Article No. 197. DOI:10.1145/3355089.3356495.<br />
[29] Sorkine O. Laplacian mesh processing. In Proc. the 26th Annual Conference of the European Association for Computer Graphics, August 29-September 2, 2005, pp.53-70. DOI:10.2312/egst.20051044.<br />
[30] Sorkine O. Differential representations for mesh processing. Computer Graphics Forum, 2006, 25(4):789-807. DOI:10.1111/j.1467-8659.2006.00999.x.<br />
[31] Alexa M. Differential coordinates for local mesh morphing and deformation. The Visual Computer, 2003, 19(2/3):105-114. DOI:10.1007/s00371-002-0180-0.<br />
[32] Sederberg T W, Parry S R. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph., 1986, 20(4):151-160. DOI:10.1145/15886.15903.<br />
[33] Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossi C, Seidel H P. Differential coordinates for interactive mesh editing. In Proc. Shape Modeling Applications, June 2004, pp.181-190. DOI:10.1109/SMI.2004.1314505.<br />
[34] Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel H P. Laplacian surface editing. In Proc. the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, July 2004, pp.175-184. DOI:10.1145/1057432.1057456.<br />
[35] Lipman Y, Sorkine O, Alexa M, Cohen-Or D, Levin D, Rössl C, Seidel H P. Laplacian framework for interactive mesh editing. International Journal of Shape Modeling, 2005, 11(1):43-61. DOI:10.1142/S0218654305000724.<br />
[36] Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H Y. Mesh editing with Poisson-based gradient field manipulation. In Proc. the 2004 ACM SIGGRAPH Papers, August 2004, pp.644-651. DOI:10.1145/1186562.1015774.<br />
[37] Zayer R, Rössl C, Karni Z, Seidel H P. Harmonic guidance for surface deformation. Computer Graphics Forum, 2005, 24(3):601-609. DOI:10.1111/j.1467-8659.2005.00885.x.<br />
[38] Botsch M, Pauly M, Gross M H, Kobbelt L. PriMo:Coupled prisms for intuitive surface modeling. In Proc. the Eurographics Symposium on Geometry Processing, June 2006, pp.11-20. DOI:10.2312/SGP/SGP06/011-020.<br />
[39] Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, Shum H Y. Large mesh deformation using the volumetric graph Laplacian. In Proc. the 2005 ACM SIGGRAPH Papers, July 2005, pp.496-503. DOI:10.1145/1186822.1073219.<br />
[40] Sheffer A, Kraevoy V. Pyramid coordinates for morphing and deformation. In Proc. the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, September 2004, pp.68-75. DOI:10.1109/TDPVT.2004.1335149.<br />
[41] Au O C, Tai C L, Liu L, Fu H. Dual Laplacian editing for meshes. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(3):386-395. DOI:10.1109/TVCG.2006.47.<br />
[42] Fu H, Au O K C, Tai C L. Effective derivation of similarity transformations for implicit Laplacian mesh editing. Computer Graphics Forum, 2007, 26(1):34-45. DOI:10.1111/j.1467-8659.2007.00940.x.<br />
[43] Huang J, Shi X, Liu X, Zhou K, Wei L Y, Teng S H, Bao H, Guo B, Shum H Y. Subspace gradient domain mesh deformation. In Proc. the 2006 ACM SIGGRAPH Papers, July 2006, pp.1126-1134. DOI:10.1145/1179352.1142003.<br />
[44] Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. In Proc. the 2005 ACM SIGGRAPH Papers, July 2005, pp.561-566. DOI:10.1145/1186822.1073229.<br />
[45] Vallet B, Lévy B. Spectral geometry processing with manifold harmonics. Computer Graphics Forum, 2008, 27(2):251-260. DOI:10.1111/j.1467-8659.2008.01122.x.<br />
[46] Alexa M, Cohen-Or D, Levin D. As-rigid-as-possible shape interpolation. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.157-164. DOI:10.1145/344779.344859.<br />
[47] Igarashi T, Moscovich T, Hughes J F. As-rigid-as-possible shape manipulation. ACM Trans. Graph., 2005, 24(3):1134-1141. DOI:10.1145/1073204.1073323.<br />
[48] Sorkine O, Alexa M. As-rigid-as-possible surface modeling. In Proc. the 5th Eurographics Symposium on Geometry Processing, July 2007, pp.109-116. DOI:10.2312/SGP/SGP07/109-116.<br />
[49] Chao I, Pinkall U, Sanan P, Schröder P. A simple geometric model for elastic deformations. ACM Trans. Graph., 2010, 29(4):Article No. 38. DOI:10.1145/1778765.1778775.<br />
[50] Levi Z, Gotsman C. Smooth rotation enhanced as-rigid-aspossible mesh animation. IEEE Transactions on Visualization and Computer Graphics, 2014, 21(2):264-277. DOI:10.1109/TVCG.2014.2359463.<br />
[51] Cuno A, Esperança C, Oliveira A, Cavalcanti P R. 3D as-rigid-as-possible deformations using MLS. In Proc. the 27th Computer Graphics International Conference, May 30-June 2, 2007, pp.115-122.<br />
[52] Liu Y S, Yan H B, Martin R R. As-rigid-as-possible surface morphing. Journal of Computer Science and Technology, 2011, 26(3):548-557. DOI:10.1007/s11390-011-1154-3.<br />
[53] Chen S Y, Gao L, Lai Y K, Xia S. Rigidity controllable as-rigid-as-possible shape deformation. Graphical Models, 2017, 91:13-21. DOI:10.1016/j.gmod.2017.02.005.<br />
[54] Qin X, Wu T, Liu Y. A surface deformation method based on stiffness control. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2020, 14(1):Article No. JAMDSM0010. DOI:10.1299/jamdsm.2020jamdsm0010.<br />
[55] Le Vaou Y, Léon J C, Hahmann S, Masfrand S, Mika M. As-stiff-as-needed surface deformation combining ARAP energy with an anisotropic material. ComputerAided Design, 2020, 121:Article No. 102803. DOI:10.1016/j.cad.2019.102803.<br />
[56] Colaianni M, Siegl C, Süßmuth J, Bauer F, Greiner G. Anisotropic surface based deformation. In Proc. the 2016 SIGGRAPH ASIA Technical Briefs, November 2016, Article No. 1. DOI:10.1145/3005358.3005361.<br />
[57] Colaianni M, Siegl C, Süßmuth J, Bauer F, Greiner G. Anisotropic deformation for local shape control. Computational Visual Media, 2017, 3(4):305-313. DOI:10.1007/s41095-017-0092-6.<br />
[58] Borosán P, Howard R, Zhang S, Nealen A. Hybrid mesh editing. In Proc. the 31st Annual Conference of the European Association for Computer Graphics, May 2010, pp.41-44. DOI:10.2312/egsh.20101043.<br />
[59] Sun Q, Wan W, Feng X, Chen G, Rizwan M, Sánchez J A. Bi-harmonic surface based as-rigid-as-possible mesh deformation. Journal of Computers, 2018, 29(4):161-175. DOI:10.3966/199115992018082904013.<br />
[60] Zollhöfer M, Sert E, Greiner G, Süßmuth J. GPU based ARAP deformation using volumetric lattices. In Proc. the 33rd Annual Conference of the European Association for Computer Graphics, May 2012, pp.85-88. DOI:0.2312/conf/EG2012/short/085-088.<br />
[61] Manson J, Schaefer S. Hierarchical deformation of locally rigid meshes. Computer Graphics Forum, 2011, 30(8):2387-2396. DOI:10.1111/j.1467-8659.2011.02074.x.<br />
[62] Kovalsky S Z, Galun M, Lipman Y. Accelerated quadratic proxy for geometric optimization. ACM Trans. Graph., 2016, 35(4):Article No. 134. DOI:10.1145/2897824.2925920.<br />
[63] Peng Y, Deng B, Zhang J, Geng F, Qin W, Liu L. Anderson acceleration for geometry optimization and physics simulation. ACM Trans. Graph., 2018, 37(4):Article No. 42. DOI:10.1145/3197517.3201290.<br />
[64] Rabinovich M, Poranne R, Panozzo D, Sorkine-Hornung O. Scalable locally injective mappings. ACM Trans. Graph., 2017, 36(4):Article No. 16. DOI:10.1145/2983621.<br />
[65] Shtengel A, Poranne R, Sorkine-Hornung O, Kovalsky S Z, Lipman Y. Geometric optimization via composite majorization. ACM Trans. Graph., 2017, 36(4):Article No. 38. DOI:10.1145/3072959.3073618.<br />
[66] Zhu Y, Bridson R, Kaufman D M. Blended cured quasiNewton for distortion optimization. ACM Trans. Graph., 2018, 37(4):Article No. 40. DOI:10.1145/3197517.3201359.<br />
[67] Zhang S, Nealen A, Metaxas D N. Skeleton based as-rigid-as-possible volume modeling. In Proc. the 31st Annual Conference of the European Association for Computer Graphics, May 2010, pp.21-24. DOI:10.2312/egsh.20101038.<br />
[68] Zhang S, Huang J, Metaxas D N. Robust mesh editing using Laplacian coordinates. Graphical Models, 2011, 73(1):10-19. DOI:10.1016/j.gmod.2010.10.003.<br />
[69] Jacobson A, Baran I, Kavan L, Popović J, Sorkine O. Fast automatic skinning transformations. ACM Trans. Graph., 2012, 31(4):Article No. 77. DOI:10.1145/2185520.2185573.<br />
[70] Yang J, Gao L, Lai Y K, Rosin P L, Xia S. Biharmonic deformation transfer with automatic key point selection. Graphical Models, 2018, 98:1-13. DOI:10.1016/j.gmod.2018.05.003.<br />
[71] Gao L, Lai Y K, Yang J, Zhang L X, Xia S, Kobbelt L. Sparse data driven mesh deformation. IEEE Transactions on Visualization and Computer Graphics, 2019, 27(3):2085-2100. DOI:10.1109/TVCG.2019.2941200.<br />
[72] Liu L, Zhang L, Xu Y, Gotsman C, Gortler S J. A local/global approach to mesh parameterization. Computer Graphics Forum, 2008, 27(5):1495-1504. DOI:10.1111/j.1467-8659.2008.01290.x.<br />
[73] Gao L, Lai Y K, Huang Q X, Hu S M. A data-driven approach to realistic shape morphing. Computer Graphics Forum, 2013, 32(2):449-457. DOI:10.1111/cgf.12065.<br />
[74] Bouaziz S, Deuss M, Schwartzburg Y, Weise T, Pauly M. Shape-up:Shaping discrete geometry with projections. Computer Graphics Forum, 2012, 31(5):1657-1667. DOI:10.1111/j.1467-8659.2012.03171.x.<br />
[75] Huang Q X, Wicke M, Adams B, Guibas L. Shape decomposition using modal analysis. Computer Graphics Forum, 2009, 28(2):407-416. DOI:10.1111/j.1467-8659.2009.01380.x.<br />
[76] Liu T, Bargteil A W, O'Brien J F, Kavan L. Fast simulation of mass-spring systems. ACM Trans. Graph., 2013, 32(6):Article No. 214. DOI:10.1145/2508363.2508406.<br />
[77] Levi Z, Gotsman C. D-snake:Image registration by assimilar-as-possible template deformation. IEEE Transactions on Visualization and Computer Graphics, 2012, 19(2):331-343. DOI:10.1109/TVCG.2012.134.<br />
[78] Sỳkora D, Dingliana J, Collins S. As-rigid-as-possible image registration for hand-drawn cartoon animations. In Proc. the 7th International Symposium on Non-Photorealistic Animation and Rendering, August 2009, pp.25-33. DOI:10.1145/1572614.1572619.<br />
[79] Fadaifard H, Wolberg G. Image warping for retargeting garments among arbitrary poses. The Visual Computer, 2013, 29(6/7/8):525-534. DOI:10.1007/s00371-013-0816-2.<br />
[80] Wang Y S, Liu F, Hsu P S, Lee T Y. Spatially and temporally optimized video stabilization. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(8):1354-1361. DOI:10.1109/TVCG.2013.11.<br />
[81] Crane K, Pinkall U, Schröder P. Spin transformations of discrete surfaces. In Proc. the 2011 ACM SIGGRAPH Papers, July 2011, Article No. 104. DOI:10.1145/1964921.1964999.<br />
[82] Fang Q, Zhao Z Y, Liu Z Y, Liu L, Fu X M. Metric first reconstruction for interactive curvature-aware modeling. Computer-Aided Design, 2020, 126:Article No. 102863. DOI:10.1016/j.cad.2020.102863.<br />
[83] Lai Y K, Zhou Q Y, Hu S M, Wallner J, Pottmann H. Robust feature classification and editing. IEEE Transactions on Visualization and Computer Graphics, 2006, 13(1):34-45. DOI:10.1109/TVCG.2007.19.<br />
[84] Lipman Y, Cohen-Or D, Gal R, Levin D. Volume and shape preservation via moving frame manipulation. ACM Trans. Graph., 2007, 26(1):Article No. 5. DOI:10.1145/1189762.1189767.<br />
[85] Alhashim I, Zhang H, Liu L. Detail-replicating shape stretching. The Visual Computer, 2012, 28(12):1153-1166. DOI:10.1007/s00371-011-0665-9.<br />
[86] Au O K C, Tai C L, Chu H K, Cohen-Or D, Lee T Y. Skeleton extraction by mesh contraction. ACM Trans. Graph., 2008, 27(3):Article No. 44. DOI:10.1145/1360612.1360643.<br />
[87] Liu Z, Wang W M, Liu X P, Liu L G. Scale-aware shape manipulation. Journal of Zhejiang University SCIENCE C, 2014, 15(9):764-775. DOI:10.1631/jzus.C1400122.<br />
[88] Xu L, Wang R, Zhang J, Yang Z, Deng J, Chen F, Liu L. Survey on sparsity in geometric modeling and processing. Graphical Models, 2015, 82:160-180. DOI:10.1016/j.gmod.2015.06.012.<br />
[89] Gao L, Zhang G, Lai Y. Lp shape deformation. Science China Information Sciences, 2012, 55(5):983-993. DOI:10.1007/s11432-012-4574-y.<br />
[90] Deng B, Bouaziz S, Deuss M, Zhang J, Schwartzburg Y, Pauly M. Exploring local modifications for constrained meshes. Computer Graphics Forum, 2013, 32(2pt1):11-20. DOI:10.1111/cgf.12021.<br />
[91] Museth K, Breen D E, Whitaker R T, Barr A H. Level set surface editing operators. In Proc. the 29th Annual Conference on Computer Graphics and Interactive Techniques, July 2002, pp.330-338. DOI:10.1145/566570.566585.<br />
[92] Eyiyurekli M, Breen D E. Detail-preserving level set surface editing and geometric texture transfer. Graphical Models, 2017, 93:39-52. DOI:10.1016/j.gmod.2017.08.002.<br />
[93] Coquillart S. Extended free-form deformation:A sculpturing tool for 3D geometric modeling. In Proc. the 17th Annual Conference on Computer Graphics and Interactive Techniques, September 1990, pp.187-196. DOI:10.1145/97879.97900.<br />
[94] Kraevoy V, Sheffer A, Shamir A, Cohen-Or D. Nonhomogeneous resizing of complex models. ACM Trans. Graph., 2008, 27(5):Article No. 111. DOI:10.1145/1409060.1409064.<br />
[95] Xu W, Wang J, Yin K, Zhou K, Van De Panne M, Chen F, Guo B. Joint-aware manipulation of deformable models. ACM Trans. Graph., 2009, 28(3):Article No. 35. DOI:10.1145/1531326.1531341.<br />
[96] Gal R, Sorkine O, Mitra N J, Cohen-Or D. iWIRES:An analyze-and-edit approach to shape manipulation. In Proc. the 2009 ACM SIGGRAPH Papers, July 2009, Article No. 33. DOI:10.1145/1576246.1531339.<br />
[97] Li G, Liu L, Zheng H, Mitra N J. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph., 2010, 29(6):Article No. 152. DOI:10.1145/1882261.1866178.<br />
[98] Zheng Y, Fu H, Cohen-Or D, Au O K C, Tai C L. Component-wise controllers for structure-preserving shape manipulation. Computer Graphics Forum, 2011, 30(2):563-572. DOI:10.1111/j.1467-8659.2011.01880.x.<br />
[99] Xu K, Zheng H, Zhang H, Cohen-Or D, Liu L, Xiong Y. Photo-inspired model-driven 3D object modeling. ACM Trans. Graph., 2011, 30(4):Article No. 80. DOI:10.1145/2010324.1964975.<br />
[100] Zhang C, Yang L, Xu L, Wang G, Wang W. Real-time editing of man-made mesh models under geometric constraints. Computers & Graphics, 2019, 82:174-182. DOI:10.1016/j.cag.2019.05.028.<br />
[101] Bokeloh M, Wand M, Koltun V, Seidel H P. Patternaware shape deformation using sliding dockers. In Proc. the 2011 SIGGRAPH Asia Conference, December 2011, Article No. 123. DOI:10.1145/2024156.2024157.<br />
[102] Bokeloh M, Wand M, Seidel H P, Koltun V. An algebraic model for parameterized shape editing. ACM Trans. Graph., 2012, 31(4):Article No. 78. DOI:10.1145/2185520.2185574.<br />
[103] Lin J, Cohen-Or D, Zhang H, Liang C, Sharf A, Deussen O, Chen B. Structure-preserving retargeting of irregular 3D architecture. ACM Trans. Graph., 2011, 30(6):Article No. 183. DOI:10.1145/2070781.2024217.<br />
[104] Milliez A, Wand M, Cani M P, Seidel H P. Mutable elastic models for sculpting structured shapes. Computer Graphics Forum, 2013, 32(2pt1):21-30. DOI:10.1111/cgf.12022.<br />
[105] Habbecke M, Kobbelt L. Linear analysis of nonlinear constraints for interactive geometric modeling. Computer Graphics Forum, 2012, 31(2pt3):641-650. DOI:10.1111/j.1467-8659.2012.03043.x.<br />
[106] Cabral M, Lefebvre S, Dachsbacher C, Drettakis G. Structure-preserving reshape for textured architectural scenes. Computer Graphics Forum, 2009, 28(2):469-480. DOI:10.1111/j.1467-8659.2009.01386.x.<br />
[107] Tagliasacchi A, Delame T, Spagnuolo M, Amenta N, Telea A. 3D skeletons:A state-of-the-art report. Computer Graphics Forum, 2016, 35(2):573-597. DOI:10.1111/cgf.12865.<br />
[108] Magnenat-Thalmann N, Laperrière R, Thalmann D. Jointdependent local deformations for hand animation and object grasping. In Proc. the 14th Graphics Interface Conference, June 1988, pp.26-33. DOI:10.20380/GI1988.04.<br />
[109] Bang S, Lee S H. Spline interface for intuitive skinning weight editing. ACM Trans. Graph., 2018, 37(5):Article No. 174. DOI:10.1145/3186565.<br />
[110] Baran I, Popović J. Automatic rigging and animation of 3D characters. ACM Trans. Graph., 2007, 26(3):Article No. 72. DOI:10.1145/1276377.1276467.<br />
[111] Wareham R, Lasenby J. Bone glow:An improved method for the assignment of weights for mesh deformation. In Proc. the 5th International Conference on Articulated Motion and Deformable Objects, July 2008, pp.63-71. DOI:10.1007/978-3-540-70517-8_7.<br />
[112] Jacobson A, Baran I, Popovic J, Sorkine O. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph., 2011, 30(4):Article No. 78. DOI:10.1145/2010324.1964973.<br />
[113] Jacobson A, Weinkauf T, Sorkine O. Smooth shapeaware functions with controlled extrema. Computer Graphics Forum, 2012, 31(5):1577-1586. DOI:10.1111/j.1467-8659.2012.03163.x.<br />
[114] Yuan Y J, Lai Y K, Wu T, Xia S, Gao L. Datadriven weight optimization for real-time mesh deformation. Graphical Models, 2019, 104:Article No. 101037. DOI:10.1016/j.gmod.2019.101037.<br />
[115] Dionne O, Lasa M. Geodesic voxel binding for production character meshes. In Proc. the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2013, pp.173-180. DOI:10.1145/2485895.2485919.<br />
[116] Dionne O, De Lasa M. Geodesic binding for degenerate character geometry using sparse voxelization. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(10):1367-1378. DOI:10.1109/TVCG.2014.2321563.<br />
[117] Yan H B, Hu S M, Martin R. Skeleton-based shape deformation using simplex transformations. In Proc. the 24th Computer Graphics International Conference, June 2006, pp.66-77. DOI:10.1007/11784203_6.<br />
[118] Yan H B, Hu S, Martin R R, Yang Y L. Shape deformation using a skeleton to drive simplex transformations. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(3):693-706. DOI:10.1109/TVCG.2008.28.<br />
[119] Lewis J P, Cordner M, Fong N. Pose space deformation:A unified approach to shape interpolation and skeletondriven deformation. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.165-172. DOI:10.1145/344779.344862.<br />
[120] Mohr A, Gleicher M. Building efficient, accurate character skins from examples. ACM Trans. Graph., 2003, 22(3):562-568. DOI:10.1145/882262.882308.<br />
[121] Wang R Y, Pulli K, Popović J. Real-time enveloping with rotational regression. In Proc. the 2007 ACM SIGGRAPH Papers, July 2007, Article No. 73. DOI:10.1145/1275808.1276468.<br />
[122] Chen C H, Lin I C, Tsai M H, Lu P H. Latticebased skinning and deformation for real-time skeletondriven animation. In Proc. the 12th International Conference on Computer-Aided Design and Computer Graphics, September 2011, pp.306-312. DOI:10.1109/CAD/Graphics.2011.41.<br />
[123] Abu Rumman N, Fratarcangeli M. Position-based skinning for soft articulated characters. Computer Graphics Forum, 2015, 34(6):240-250. DOI:10.1111/cgf.12533.<br />
[124] Weber O, Sorkine O, Lipman Y, Gotsman C. Contextaware skeletal shape deformation. Computer Graphics Forum, 2007, 26(3):265-274. DOI:10.1111/j.1467-8659.2007.01048.x.<br />
[125] Shi X, Zhou K, Tong Y, Desbrun M, Bao H, Guo B. Example-based dynamic skinning in real time. ACM Trans. Graph., 2008, 27(3):Article No. 29. DOI:10.1145/1399504.1360628.<br />
[126] Kavan L, Collins S, Žára J, O'Sullivan C. Skinning with dual quaternions. In Proc. the 2007 Symposium on Interactive 3D Graphics and Games, April 30-May 2, 2007, pp.39-46. DOI:10.1145/1230100.1230107.<br />
[127] Kavan L, Collins S, Žára J, O'Sullivan C. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph., 2008, 27(4):Article No. 105. DOI:10.1145/1409625.1409627.<br />
[128] Kavan L, Collins S, O'Sullivan C. Automatic linearization of nonlinear skinning. In Proc. the 2009 Symposium on Interactive 3D Graphics and Games, February 27-March 1, 2009, pp.49-56. DOI:10.1145/1507149.1507157.<br />
[129] Alexa M. Linear combination of transformations. ACM Trans. Graph., 2002, 21(3):380-387. DOI:10.1145/566654.566592.<br />
[130] Magnenat-Thalmann N, Cordier F, Seo H, Papagianakis G. Modeling of bodies and clothes for virtual environments. In Proc. the 3rd International Conference on Cyberworlds, November 2004, pp.201-208. DOI:10.1109/CW.2004.47.<br />
[131] Kavan L, Žára J. Spherical blend skinning:A real-time deformation of articulated models. In Proc. the 2005 Symposium on Interactive 3D Graphics and Games, April 2005, pp.9-16. DOI:10.1145/1053427.1053429.<br />
[132] Le B H, Hodgins J K. Real-time skeletal skinning with optimized centers of rotation. ACM Trans. Graph., 2016, 35(4):Article No. 37. DOI:10.1145/2897824.2925959.<br />
[133] Kim Y, Han J. Bulging-free dual quaternion skinning. Computer Animation and Virtual Worlds, 2014, 25(3/4):321-329. DOI:10.1002/cav.1604.<br />
[134] Forstmann S, Ohya J. Fast skeletal animation by skinned arc-spline based deformation. In Proc. the 27th Annual Conference of the European Association for Computer Graphics, September 2006, pp.1-4. DOI:10.2312/egs.20061014.<br />
[135] Forstmann S, Ohya J, Krohn-Grimberghe A, McDougall R. Deformation styles for spline-based skeletal animation. In Proc. the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, August 2007, pp.141-150. DOI:10.2312/SCA/SCA07/141-150.<br />
[136] Yang X, Somasekharan A, Zhang J J. Curve skeleton skinning for human and creature characters. Computer Animation and Virtual Worlds, 2006, 17(3/4):281-292. DOI:10.1002/cav.132.<br />
[137] Öztireli A C, Baran I, Popa T, Dalstein B, Sumner R W, Gross M. Differential blending for expressive sketch-based posing. In Proc. the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2013, pp.155-164. DOI:10.1145/2485895.2485916.<br />
[138] Wang X C, Phillips C. Multi-weight enveloping:Leastsquares approximation techniques for skin animation. In Proc. the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2002, pp.129-138. DOI:10.1145/545261.545283.<br />
[139] Merry B, Marais P, Gain J. Animation space:A truly linear framework for character animation. ACM Trans. Graph., 2006, 25(4):1400-1423. DOI:10.1145/1183287.1183294.<br />
[1] 张鑫, 陆思源, 王水花, 余翔, 王甦菁, 姚仑, 潘毅, 张煜东. 通过新型深度学习架构诊断COVID-19肺炎[J]. 计算机科学技术学报, 2022, 37(2): 330-343.
[2] 孔雀屏, 王子彦, 黄袁, 陈湘萍, 周晓聪, 郑子彬, 黄罡. 定义和检测智能合约中低效率的Gas模式[J]. 计算机科学技术学报, 2022, 37(1): 67-82.
[3] Yu-Wei Wu, Qing-Gang Wang, Long Zheng, Xiao-Fei Liao, Hai Jin, Wen-Bin Jiang, Ran Zheng, Kan Hu. FDGLib:在数据中心中支持高效大规模图计算加速的通信库[J]. 计算机科学技术学报, 2021, 36(5): 1051-1070.
[4] Xiao-Jing Zha, Yin-Shui Xia, Shang-Luan Xie, Zhu-Fei Chu. 面向时延优化的CMOL电路容错映射[J]. 计算机科学技术学报, 2021, 36(5): 1118-1132.
[5] Hui-Ming Tian, Zhu-Fei Chu. 基于具有互补属性器件的反相器优化策略[J]. 计算机科学技术学报, 2021, 36(5): 1145-1154.
[6] Songjie Niu, Shimin Chen. TransGPerf:利用迁移学习建模分布式图计算性能[J]. 计算机科学技术学报, 2021, 36(4): 778-791.
[7] Lan Chen, Juntao Ye, Xiaopeng Zhang. 基于多特征超分网络的布料褶皱合成[J]. 计算机科学技术学报, 2021, 36(3): 478-493.
[8] Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. 基于深度学习的文本摘要研究综述[J]. 计算机科学技术学报, 2021, 36(3): 633-663.
[9] Wei Du, Yu Sun, Hui-Min Bao, Liang Chen, Ying Li, Yan-Chun Liang. 基于迁移学习与深度学习的人类血液分泌蛋白预测框架[J]. 计算机科学技术学报, 2021, 36(2): 234-247.
[10] Jun Gao, Paul Liu, Guang-Di Liu, Le Zhang. 基于深度学习与波束偏转的穿刺针定位与增强算法[J]. 计算机科学技术学报, 2021, 36(2): 334-346.
[11] Hua Chen, Juan Liu, Qing-Man Wen, Zhi-Qun Zuo, Jia-Sheng Liu, Jing Feng, Bao-Chuan Pang, Di Xiao. CytoBrain:基于深度学习技术的宫颈癌筛查系统[J]. 计算机科学技术学报, 2021, 36(2): 347-360.
[12] Zeynep Banu Ozger, Nurgul Yuzbasioglu Uslu. 基于三元组重新排序的有效离散人工蜂群SPARQL查询路径优化[J]. 计算机科学技术学报, 2021, 36(2): 445-462.
[13] Jason Liu, Pedro Espina, Xian-He Sun. 关于储存系统建模和优化的综述[J]. 计算机科学技术学报, 2021, 36(1): 71-89.
[14] Mohammad Y. Mhawish, Manjari Gupta. 使用机器学习技术和软件度量的代码异味预测与预测分析[J]. 计算机科学技术学报, 2020, 35(6): 1428-1445.
[15] Andrea Caroppo, Alessandro Leone, Pietro Siciliano. 用于老年人面部表情识别的深度学习模型和传统机器学习方法的对比研究[J]. 计算机科学技术学报, 2020, 35(5): 1127-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周笛;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] 陈世华;. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. , 1986, 1(2): 54 -59 .
[3] 王选; 吕之敏; 汤玉海; 向阳;. A High Resolution Chinese Character Generator[J]. , 1986, 1(2): 1 -14 .
[4] C.Y.Chung; 华宣仁;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[5] 孙钟秀; 商陆军;. DMODULA:A Distributed Programming Language[J]. , 1986, 1(2): 25 -31 .
[6] 金兰; 杨元元;. A Modified Version of Chordal Ring[J]. , 1986, 1(3): 15 -32 .
[7] 潘启敬;. A Routing Algorithm with Candidate Shortest Path[J]. , 1986, 1(3): 33 -52 .
[8] 王建潮; 魏道政;. An Effective Test Generation Algorithm for Combinational Circuits[J]. , 1986, 1(4): 1 -16 .
[9] 陈肇雄; 高庆狮;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[10] 黄河燕;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: