[1] Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, UK, 2005.
[2] Sh\"olkopf B, Smola A J. Learning with Kernels. Cambridge, Massachusetts: The MIT Press, USA, 2002.
[3] Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
[4] Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge University Press, UK, 2000.
[5] Zhang L, Zhang B. Relationship between support vector set and kernel functions in SVM. Journal of Computer Science and Technology, 2002, 17(5): 549-555.
[6] Lanckriet G, Cristianini N, Baltlett P, El Ghaoui L, Jordan M I. Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research, Dec. 2004, 5: 27-72.
[7] Rakotomamonjy A, Bach F, Canu S, Grandvalet Y. More efficiency in multiple kernel learning. In Proc. the 24th International Conference on Machine Learning, Corvalis, USA, June 20-24, 2007, pp.775-782.
[8] Bach F, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In Proc. the 21st International Conference on Machine Learning, Banff, Canada, July 4-8, 2004, pp.41-48.
[9] Sonnenburg S, R\"aetsch G, Sch\"aefer C, Sch\"olkopf B. Large scale multiple kernel learning. Journal of Machine Learning Research, Dec. 2006, 7: 1531-1565.
[10] Rakotomamonjy A, Bach F, Canu S, Grandvalet Y. SimpleMKL. Journal of Machine Learning Research, Nov. 2008, 9: 2491-2521.
[11] Chapelle O, Rakotomamonjy A. Second order optimization of kernel parameters. In Proc. the NIPS Workshop on Kernel Learning: Automatic Selection of Optimal Kernels, Vancouver, Canada, Dec. 8-13, 2008.
[12] Bousquet O, Herrmann D J L. On the complexity of learning the kernel matrix. In Proc. Advances in Neural Information Processing Systems 14, Vanconver, Canada, Dec. 9-14, 2002, pp.367-373.
[13] Yeh C J, Su W P, Lee S J. Improving efficiency of multi-kernel learning for support vector machines. In Proc. 2008 International Conference on Machine Learning and Cybernetic, Qunming, China, July 12-15, 2008, pp.3985-3990.
[14] Varma M, Babu B R. More generality in efficient multiple kernel learning. In Proc. the 26th International Conference on Machine Learning, Montreal, Canada, June 14-18, 2009, Article No.134.
[15] Alizadeh F, Goldfarb D. Second-order cone programming. Mathematical Programming Series B, 2003, 95(1): 3-51.
[16] Lobo M S, Vandenberghe L, Boyd S, Lebret H. Applications of second-order cone programming. Linear Algebra and Applications, 1998, 284(1-3): 193-228.
[17] Mittelmann H D. An independent benchmarking of SDP and SOCP solvers. Math. Programm. Ser. B, 2003, 95(2): 407-430.
[18] Sturm J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 1999, (11/12): 625-653.
[19] Sturm J F. Similarity and other spectral relations for symmetric cones. Technical report, Department of Quantative Economics, Maastricht University, The Netherlands, 1999.
[20] Goldfarb D, Iyengar G. Robust convex quadratically constrained programs. Mathematical Programming Series B, 2003, 97(3): 495-515.
[21] Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in Convex Programming. Philadelphia, PA: SIAM, 1994.
[22] Tsang I W H, Kwok J T Y. Efficient hyperkernel learning using second-order cone programming. IEEE Transactions on Neural Networks, 2006, 17(1): 48-58.
[23] Ben-Tal A, Nemirovski A. Robust convex optimization. Mathematics of Operations Research, 1998, 23(4): 769-805.
[24] Lanckriet G, Ghaoui L, Bhattacharyya C, Jordan M I. A robust minimax approach to classification. Journal of Machine Learning Research, Dec. 2002, 3: 555-582.
[25] Strohmann T R, Belitski A, Grudic G Z, DeCoste D. Sparse greedy minimax probability machine classification. In Proc. Advances in Neural Information Processing Systems 15, Vancouver and Whistler, Canada, Dec. 8-13, 2003.
[26] Marshall A, Olkin I. Multivariate chebyshev inequalities. Ann. Math. Stat., 1960, 31(4): 1001-1014.
[27] Popescu I, Bertsimas D. Optimal inequalities in probability theory: A convex optimization approach. Technical Report TM62, Insead, 2000.
[28] Cheng S O, Smola A J, Williamson R C. Learning the kernel with hyperkernels. Journal of Machine Learning Research, Jul. 2005, 6: 1043-1071.
[29] Toh K C, Todd M J, Tutuncu R H. SDPT3 --- A Matlab software package for semidefinite programming. Optimization Methods and Software, 1999, 11: 545-581.
[30] Newman D J, Hettich S, Blake C L, Merz C J. UCI Repository of machine learning databases. Department of Information and Computer Sciences, University of California, Irvine, 1998.
[31] King R D. Statlog databases. Department of Statistics and Modelling Science, University of Strathclyde, Glasgow, U.K., 1992.
|