[1] Automatic Content Extraction. http://www.ldc.upenn.edu/rojects/ACE/, 2000-2007.
[2] Haussler D. Convolution kernels on discrete structures. Techical Report UCS-CRL-99-10, University of California, Santa ruzca, USA, 1999.
[3] Vapnik V. Statistical Learning Theory. Chichester: Whiley, K, 1998.
[4] Kambhatla N. Combining lexical, syntactic and semantic feaures with Maximum Entropy models for extracting relaions. In Proc. ACL 2004, Barcelona, Spain, Jul. 21-26, 2004, p.178-181.
[5] Zhao S B, Grishman R. Extracting relations with integrated nformation using kernel methods. In Proc. ACL 2005, Ann rbor, USA, Jun. 25-30, 2005, pp.419-426.
[6] Zhou G D, Su J, Zhang J, Zhang M. Exploring various knowldge in relation extraction. In Proc. ACL 2005, Ann Arbor, SA, Jun. 25-30, 2005, pp.427-434.
[7] Zelenko D, Aone C, Richardella. Kernel methods for relation xtraction. Journal of Machine Learning Research, 2003, 3: 1083-1106.
[8] Culotta A, Sorensen J. Dependency tree kernels for relation xtraction. In Proc. ACL 2004, Barcelona, Spain, Jul. 21-26, 004, pp.423-429.
[9] Bunescu R, Mooney R J. A shortest path dependency kernel or relation extraction. In Proc. HLT/EMNLP2005, Vancouer, Canada, Oct. 6-8, 2005, pp.724-731.
[10] Zhang M, Zhang J, Su J, Zhou G D. A composite kernel to exract relations between entities with both flat and structured eatures. In Proc. COLING-ACL 2006, Sydney, Australia, Jul. 17-21, 2006, pp.825-832.
[11] Collins M, Duffy N. Convolution kernels for natural language. In Proc. NIPS 2001, Vancouver, Canada, Dec. 3-8, 2001, p.625-632.
[12] Zhou G D, Zhang M, Ji D H, Zhu Q M. Tree kernel-based reation extraction with context-sensitive structured parse tree nformation. In Proc. EMNLP-CoNLL 2007, Prague, Czech, Jun. 28-30, 2007, pp.728-736.
[13] Petrov S, Barrett L, Thibaux R, Klein D. Learning accuate, compact and interpretable tree annotation. In Proc. CL 2006, Sydney, Australia, Jul. 17-21, 2006, pp.433-440.
[14] Moschitti A. A study on convolution kernels for shallow parsng. In Proc. ACL 2004, Barcelona, Spain, Jul. 21-26, 2004, p.335-342.
[15] Zhang M, Che W X, Aw A T, Tan C L, Zhou G D, Liu T, Li . A grammar-driven convolution tree kernel for semantic role lassification. In Proc. ACL 2007, Prague, Czech, Jun. 23-30, 2007, pp.200-207.
[16] Moschitti A. Efficient convolution kernels for dependency and onstituent syntactic trees. In Proc. ECML2006, Berlin, ermany, Sept. 18-22, 2006, pp.318-329.
[17] Klein D, Manning C D. Accurate unlexicalized parsing. In Proc. ACL 2003, Sapporo, Japan, Jul. 7-12, 2003, pp.423-430.
[18] Petrov S, Klein D. Discriminative log-linear grammars with atent variables. In Proc. NIPS 2008, Vancouver, Canada, Dec. 8-13, 2008, pp.1-8.
[19] Charniak E. Immediate-head parsing for language models. In Proc. ACL 2001, Tonlouse, France, Jul. 9-11, 2001, pp.129-137.
[20] Joachims T. Text categorization with support vector machine: earning with many relevant features. In Proc. ECML1998, hemnitz, Germany, Apr. 21-23, 1998, pp.137-142.
[21] Moschitti A. Making tree kernels practical for natural lanuage learning. In Proc. EACL 2006, Trento, Italy, Apr. 3-7, 2006, pp.113-120.
[22] Zhang M, Che W X, Zhou G D, Aw A T, Tan C L, Liu T, i S. Semantic role labeling using a grammar-driven convoution tree kernel. IEEE Transaction on Audio, Speech and anguage Processing, 2008, 16(7): 1315-1329. |