
›› 2011, Vol. 26 ›› Issue (2): 276282.doi: 10.1007/s113900111130y
• Computer Network and Information Security • Previous Articles Next Articles
ZhiXiong Chen^{1,2} (陈智雄), Member, CCF, XiaoNi Du^{2,3} (杜小妮), and ChenHuang Wu^{1} (吴晨煌), Member, CCF
[1] Mauduit C, Sárközy A. On finite pseudorandom binary sequences I: Measures of pseudorandomness, the Legendre symbol. Acta Arithmetica, 1997, 82: 365377. [2] Cassaigne J, Mauduit C, Sárközy A. On finite pseudorandom binary sequences, VII: The measures of pseudorandomness. Acta Arithmetica, 2002, 103(2): 97118. [3] Mauduit C, Sarközy A. On finite pseudorandom sequences of k symbols. Indagationes MathematicaeNew Series, 2002, 13(1): 89101. [4] Ahlswede R, Mauduit C, Sárközy A. Large Families of Pseudorandom Sequences of k Symbols and Their Complexity, Part I. General Theory of Information Transfer and Combinatorics, LNCS 4123, SpringerVerlag, 2006, pp.293307. [5] Ahlswede R, Mauduit C, Sárközy A. Large Families of Pseudorandom Sequences of k Symbols and Their Complexity, Part II. General Theory of Information Transfer and Combinatorics, LNCS 4123, SpringerVerlag, 2006, pp.308325. [6] Bérczi G. On finite pseudorandom sequences of k symbols. Periodica Mathematica Hungarica, 2003, 47(1/2): 2944. [7] Mérai L. On finite pseudorandom lattices of k symbols. Monatshefte für Mathematik, 2010, 161(2): 173191. [8] Rivat J, Sárközy A. Modular constructions of pseudorandom binary sequences with composite moduli. Periodica Mathematica Hungarica, 2005, 51(2): 75107. [9] Brandstätter N, Winterhof A. Some notes on the twoprime generator of order 2. IEEE Transactions on Information Theory, 2005, 51(10): 36543657. [10] Chen Z, Du X, Xiao G. Sequences related to Legendre/Jacobi sequences. Information Sciences, 2007, 177(21): 48204831. [11] Chen Z, Li S. Some notes on generalized cyclotomic sequences of length pq. Journal of Computer Science and Technology, 2008, 23(5): 843850. [12] Ding C. Linear complexity of generalized cyclotomic binary sequences of order 2. Finite Fields and Their Applications, 1997, 3(2): 159174. [13] Ding C. Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Transactions on Information Theory, 1998, 44(4): 16991702. [14] Du X, Chen Z. Trace representations of generalized cyclotomic sequences of length pq with arbitrary order. Chinese Journal of Electronics, 2009, 18(3): 460464. (In Chinese) [15] Yan T, Du X, Xiao G, Huang X. Linear complexity of binary Whiteman generalized cyclotomic sequences of order 2k. Information Sciences, 2009, 179(7): 10191023. [16] Green D H, Green P R. Polyphase relatedprime sequences. IEE Proceedings: Computers and Digital Techniques, 2001, 148(2): 5362. [17] Hu Y, Wei S, Xiao G. On the linear complexity of generalised Legendre/Jacobi sequences. Acta Electronica Sinica, 2002, 8(2): 113117. (In Chinese) [18] Winterhof A. Linear Complexity and Related Complexity Measures. Selected Topics in Information and Coding Theory, Singapore: World Scientific, 2010, pp.340. [19] Lidl R, Niederreiter H. Finite Fields. Cambridge: Cambridge Univ. Press, 1997. [20] Niederreiter H. Linear complexity and related complexity measures for sequences. In Proc. INDOCRYPT 2003, New Delhi, India, Dec. 810, 2003, pp.117. [21] Chen Z, Winterhof A. Linear complexity profile of mary pseudorandom sequences with small correlation measure. Indagationes MathematicaeNew Series, 2010. (To appear) [22] Chen Z, Du X. Linear complexity and autocorrelation values of a polyphase generalized cyclotomic sequence of length pq. Frontiers of Computer Science in China, 2010, 4(4): 529535. [23] Ding C. New generalized cyclotomy and its applications. Finite Fields and Their Applications, 1998, 4(2): 140166. [24] Meidl W. Remarks on a cyclotomic sequence. Design Codes and Cryptography, 2009, 51(1): 3343. 
No related articles found! 

