›› 2012, Vol. 27 ›› Issue (1): 121-134.doi: 10.1007/s11390-012-1211-6

Special Issue: Artificial Intelligence and Pattern Recognition

• Graphics, Visualization, and Image Processing • Previous Articles     Next Articles

Fast Multi-Operator Image Resizing and Evaluation

Wei-Ming Dong1,2 (董未名), Member, CCF, ACM, IEEE, Guan-Bo Bao1 (鲍冠伯), Xiao-Peng Zhang1 (张晓鹏), Member, ACM, and Jean-Claude Paul2   

  1. 1. Sino-French Laboratory for Computer Science, Automation and Applied Mathematics/National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
    2. National Institute for Research in Computer Science and Control, Domaine de Voluceau Rocquencourt Le Chesnay 78153, France
  • Received:2011-04-13 Revised:2011-04-21 Online:2012-01-05 Published:2012-01-05
  • Supported by:

    This work is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 60872120, 60902078, 61172104, the Natural Science Foundation of Beijing under Grant No. 4112061, the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry of China, the French System@tic Paris-Region (CSDL Project), and the National Agency for Research of French (ANR)-NSFC under Grant No. 60911130368.

Current multi-operator image resizing methods succeed in generating impressive results by using image simi-larity measure to guide the resizing process. An optimal operation path is found in the resizing space. However, their slow resizing speed caused by inefficient computation strategy of the bidirectional patch matching becomes a drawback in practical use. In this paper, we present a novel method to address this problem. By combining seam carving with scaling and cropping, our method can realize content-aware image resizing very fast. We define cost functions combing image energy and dominant color descriptor for all the operators to evaluate the damage to both local image content and global visual effect. Therefore our algorithm can automatically find an optimal sequence of operations to resize the image by using dynamic programming or greedy algorithm. We also extend our algorithm to indirect image resizing which can protect the aspect ratio of the dominant object in an image.

[1] Rubinstein M, Shamir A, Avidan S. Multi-operator media re-targeting. ACM Trans. Graph., 2009, 28(3), Article No. 23.

[2] Dong W, Zhou N, Paul J C, Zhang X. Optimized image re-sizing using seam carving and scaling. ACM Trans. Graph.,2009, 28(5), Article No. 125.

[3] Chen L, Xie X, Fan X, Ma W, Zhang H, Zhou H. A visualattention model for adapting images on small displays. ACMMultimedia Systems Journal, 2003, 9(4): 353-364.

[4] Liu H, Xie X, Ma W Y, Zhang H J. Automatic browsing oflarge pictures on mobile devices. In Proc. the 11th MULTI-MEDIA, Nov. 2003, pp.148-155.

[5] Suh B, Ling H, Bederson B B, Jacobs D W. Automatic thumb-nail cropping and its effectiveness. In Proc. the 16th UIST,Nov. 2003, pp.95-104.

[6] Santella A, Agrawala M, DeCarlo D, Salesin D, Cohen M.Gaze-based interaction for semi-automatic photo cropping. InProc. CHI, April 2006, pp.771-780.

[7] Viola P, Jones M J. Robust real-time face detection. Int. J.Comput. Vision, 2004, 57(2): 137-154.

[8] Itti L, Koch C, Niebur E. A model of saliency-based visual at-tention for rapid scene analysis. IEEE Trans. Pattern Anal-ysis and Machine Intelligence, 1998, 20(11): 1254-1259.

[9] DeCarlo D, Santella A. Stylization and abstraction of pho-tographs. ACM Trans. Graph., 2002, 21(3): 769-776.

[10] Walthera D, Koch C. Modeling attention to salient proto-objects. Neural Networks, 2006, 19(9): 1395-1407.

[11] El-Alfy H, Jacobs D, Davis L. Multi-scale video cropping. InProc. the 15th MULTIMEDIA, Sept. 2007, pp.97-106.

[12] Avidan S, Shamir A. Seam carving for content-aware imageresizing. ACM Trans. Graph., 2007, 26(3), Article No. 10.

[13] Rubinstein M, Shamir A, Avidan S. Improved seam carvingfor video retargeting. ACM Trans. Graph., 2008, 27(3), Ar-ticle No. 16.

[14] Gal R, Sorkine O, Cohen-Or D. Feature-aware texturing. InProc. Eurographics Symposium on Rendering, June 2006,pp.297-303.

[15] Wolf L, Guttmann M, Cohen-Or D. Non-homogeneouscontent-driven video-retargeting. In Proc. the 11th ICCV,Oct. 2007, pp.1-6.

[16] Zhang Y F, Hu S M, Martin R R. Shrinkability maps forcontent-aware video resizing. Computer Graphics Forum,2008, 27(7): 1797-1804.

[17] Wang Y S, Tai C L, Sorkine O, Lee T Y. Optimized scale-and-stretch for image resizing. ACM Trans. Graph., 2008,27(5), Article No. 118.

[18] Guo Y, Liu F, Shi J, Zhou Z H, Gleicher M. Image retarget-ing using mesh parametrization. IEEE Trans. Multi., 2009,11(5): 856-867.

[19] Kr?ahenb?uhl P, Lang M, Hornung A, Gross M. A system forretargeting of streaming video. ACM Trans. Graph., 2009,28(5), Article No. 126.

[20] Wang Y S, Fu H, Sorkine O, Lee T Y, Seidel H P. Motion-aware temporal coherence for video resizing. ACM Trans.Graph., 2009, 28(5), Article No. 127.

[21] Kim J S, Kim J H, Kim C S. Adaptive image and video retar-geting technique based on fourier analysis. In Proc. CVPR,June 2009, pp.1730-1737.

[22] Zhang G X, Cheng M M, Hu S M, Martin R R. A shape-preserving approach to image resizing. Computer GraphicsForum, 2009, 28(7): 1897-1906.

[23] Huang Q X, Mech R, Carr N. Optimizing structure preserv-ing embedded deformation for resizing images and vector art.Computer Graphics Forum, 2009, 28(7): 1887-1896.

[24] Wu H, Wang Y S, Feng K C, Wong T T, Lee T Y, Heng P A.Resizing by symmetry-summarization. ACM Trans. Graph.,2010, 29(6), Article No. 159.

[25] Cho T S, Butman M, Avidan S, Freeman W T. The patchtransform and its applications to image editing. In Proc.CVPR, June 2008.

[26] Pritch Y, Kav-Venaki E, Peleg S. Shift-map image editing. InProc. the 12th ICCV, Setp. 29-Oct. 2, 2009, pp.151-158.

[27] Barnes C, Shechtman E, Finkelstein A, Goldman D B. Patch-match: A randomized correspondence algorithm for struc-tural image editing. ACM Trans. Graph., 2009, 28(3), ArticleNo. 24.

[28] Simakov D, Caspi Y, Shechtman E, Irani M. Summarizing vi-sual data using bidirectional similarity. In Proc. CVPR, June2008.

[29] Wei L Y, Han J, Zhou K et al. Inverse texture synthesis.ACM Trans. Graph., 2008, 27(3), Article No. 52.

[30] Manjunath B, Salembier P, Sikora T. Introduction to MPEG-7: Multimedia Content Description Interface. Chichester:Wiley, 2002.

[31] Tao L, Yuan L, Sun J. SkyfInder: Attribute-based sky imagesearch. ACM Trans. Graph., 2009, 28(3), Article No. 68.

[32] Ilea D, Whelan P. CTex-an adaptive unsupervised segmen-tation algorithm based on color-texture coherence. IEEETransactions on Image Processing, 2008, 17(10): 1926-1939.

[33] Casella G, George E I. Explaining the gibbs sampler. TheAmerican Statistician, 1992, 46(3): 167-174.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Mingye; Hong Enyu;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] Chen Shihua;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] Gao Qingshi; Zhang Xiang; Yang Shufan; Chen Shuqing;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] Chen Zhaoxiong; Gao Qingshi;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] Huang Heyan;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] Min Yinghua; Han Zhide;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[7] Tang Tonggao; Zhao Zhaokeng;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[8] Min Yinghua;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[9] Zhu Hong;. Some Mathematical Properties of the Functional Programming Language FP[J]. , 1987, 2(3): 202 -216 .
[10] Li Minghui;. CAD System of Microprogrammed Digital Systems[J]. , 1987, 2(3): 226 -235 .

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved