›› 2012, Vol. 27 ›› Issue (1): 163-173.doi: 10.1007/s11390-012-1214-3

• Graphics, Visualization, and Image Processing • Previous Articles     Next Articles

Feature-Preserving Mesh Denoising via Anisotropic Surface Fitting

Jun Wang (汪俊), Member, ACM, IEEE, and Zeyun Yu (余泽云), Member, ACM, IEEE   

  1. Department of Computer Science, University of Wisconsin, Milwaukee, WI 53211, U.S.A.
  • Received:2010-11-03 Revised:2011-11-13 Online:2012-01-05 Published:2012-01-05
  • Supported by:

    The work described was supported in part by the National Institutes of Health of USA under Grant No. R15HL103497 from the National Heart, Lung, and Blood Institute (NHLBI) and by a subcontract of NIH Award under Grant No. P41RR08605 from the National Biomedical Computation Resource. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors.

We propose in this paper a robust surface mesh denoising method that can effectively remove mesh noise while faithfully preserving sharp features. This method utilizes surface fitting and projection techniques. Sharp features are preserved in the surface fitting algorithm by considering an anisotropic neighborhood of each vertex detected by the normal-weighted distance. In addition, to handle the mesh with a high level of noise, we perform a pre-filtering of surface normals prior to the neighborhood searching. A number of experimental results and comparisons demonstrate the excellent performance of our method in preserving important surface geometries while filtering mesh noise.

[1] Field D A. Laplacian smoothing and Delaunay triangulations.Commun. Applied Numerical Methods, 1988, 4(6): 709-712.

[2] Taubin G. A signal processing approach to fair surface design.In Proc. the 22nd Conf. Computer Graphics and InteractiveTechniques, Los Angeles, USA, Aug. 6-11, 1995, pp.351-358.

[3] Desbrun M, Meyer M, Schr?oder P et al. Implicit fairing ofirregular meshes using diffusion and curvature flow. In Proc.the 26th Annual Conf. Computer Graphics and InteractiveTechniques, Los Angeles, USA, Aug. 8-13, 1999, pp.317-324.

[4] Choudhury P, Tumblin J. The trilateral filter for high contrastimages and meshes. In Proc. the 14th Eurographics Symp.Rendering, Leuven, Belgium, Jun. 25-27, 2003, pp.186-196.

[5] Shen Y, Barnew K E. Fuzzy vector median-based surfacesmoothing. IEEE Trans. Visualization and ComputerGraphics, 2004, 10(3): 252-265.

[6] Zhao H, Xu G. Directional smoothing of triangular meshes.In Proc. Int. Conf. Computer Graphics, Imaging and Visu-alization, Beijing, China, Jul. 26-29, 2005, pp.397-402.

[7] Bose N K, Ahuja N A. Superresolution and noise filteringusing moving least squares. IEEE Transactions on ImageProcessing, 2006, 15(8): 2239-2248.

[8] Ji Z, Liu L, Wang G. Non-iterative global mesh smoothingwith feature preservation. Int. J. CAD/CAM, 2006, 6(1).

[9] Fan H, Yu Y, Peng Q. Robust feature-preserving mesh de-noising based on consistent sub-neighborhoods. IEEE Trans.Visualization and Computer Graphics, 2010, 16(2): 312-324.

[10] Tasdizen T, Whitaker R, Burchard P et al. Geometric surfacesmoothing via anisotropic diffusion of normals. In Proc. Vi-sualization, Boston, USA, Oct. 22-Nov. 1, 2002, pp.125-132.

[11] Tomasi C, Manduchi R. Bilateral filtering for gray and colorimages. In Proc. the 6th International Conference on Com-puter Vision, Bombay, India, Jan. 4-7, 1998, pp.839-846.

[12] Durand F, Dorsey J. Fast bilateral filtering for the display ofhigh-dynamic-range images. In Proc. the 29th Annual Con-ferences on Computer Graphics and Interactive Techniques,San Antonio, USA, Jul. 21-26, 2002, pp.257-266.

[13] Jones T, Durand F, Desbrun M. Non-iterative, feature pre-serving mesh smoothing. In Proc. ACM SIGGRAPH 2003,San Diego, USA, Jul. 27-31, 2003, pp.943-949.

[14] Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising.In Proc. ACM SIGGRAPH 2003, San Diego, USA, Jul. 27-31, 2003, pp.950-953.

[15] Yagou H, Ohtake Y, Belyaev A G. Mesh smoothing viamean and median filtering applied to face normals. In Proc.Geoemtric Modeling and Processing, Wako, Japan, Jul. 10-12,2002, pp.124-131.

[16] Ohtake Y, Belyaev A G, Seidel H P. Mesh smoothing by adap-tive and anisotropic Gaussian filter applied to mesh normals.In Proc. Vision, Modeling, and Visualization, Erlangen, Ger-many, Nov. 20-22, 2002, pp.203-210.

[17] Belyaev A, Ohtake Y. Nonlinear diffusion of normals forcrease enhancement. In Proc. Vision Geometry X, SPIEAnnual Meeting, San Diego, USA, Jul. 29-30, 2001, pp.42-47.

[18] Sun X, Rosin P, Martin R, Langbein F. Fast and effectivefeature-preserving mesh denoising. IEEE Trans. Visualiza-tion and Computer Graphics, 2007, 13(5): 925-938.

[19] Sun X, Rosin P, Martin R, Langbein F. Random walks forfeature-preserving mesh denoising. Computer Aided Geomet-ric Design, 2008, 25(7): 437-456.

[20] Hildebrandt K, Polthier K. Anisotropic filtering of non-linearsurface features. Computer Graphics Forum, 2004, 23(3):391-400.

[21] Shepard D. A tow-dimensional interpolation function forirregularly-spaced data. In Proc. the 23rd ACM NationalConference, Aug. 7-29, 1968, pp.517-524.

[22] Levin D. Mesh-independent surface interpolation. In Geomet-ric Modeling for Scientific Visualization, 2003, pp.39-47.

[23] Oztireli C, Guennebaud G, Gross M. Feature preserving pointset durfaces based on non-linear kernel regression. ComputerGraphics Forum, 2009, 28(2): 493-501.

[24] Fleishman S, Cohen-Or D, Silva C T. Robust moving least-squares fitting with sharp features. ACM Transaction onGraphics, 2005, 24(3): 544-552.

[25] Lin H, Wang G et al. Parameterization for fitting triangularmesh. Progress in Natural Science, 2006, 16(11): 1214-1221.

[26] Lai Y K, Hu S M, Pottmann H. Surface fitting based on afeature sensitive parameterization. Computer-Aided Design,2006, 38(7): 800-807.

[27] Cazals F, Pouget M. Estimating differential quantities usingpolynomial fitting of osculating jets. Computer Aided Geo-metric Design, 2005, 22(2): 121-146.

[28] do Carmo M P. Differential Geometry of Curves and Surfaces.Prentice-Hall, 1976.

[29] Golub G H, van Van Loan C F. Matrix Computations, 3rdedition. Johns Hopkins, 1996.

[30] Cignoni P, Rocchini C, Scopigno R. Metro: Measuring er-ror on simplified surfaces. Computer Graphics Forum, 1998,17(2): 167-174.
No related articles found!
Full text



[1] Liu Mingye; Hong Enyu;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] Chen Shihua;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] Gao Qingshi; Zhang Xiang; Yang Shufan; Chen Shuqing;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] Chen Zhaoxiong; Gao Qingshi;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] Huang Heyan;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] Min Yinghua; Han Zhide;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[7] Tang Tonggao; Zhao Zhaokeng;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[8] Min Yinghua;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[9] Zhu Hong;. Some Mathematical Properties of the Functional Programming Language FP[J]. , 1987, 2(3): 202 -216 .
[10] Li Minghui;. CAD System of Microprogrammed Digital Systems[J]. , 1987, 2(3): 226 -235 .

ISSN 1000-9000(Print)

CN 11-2296/TP

Editorial Board
Author Guidelines
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
E-mail: jcst@ict.ac.cn
  Copyright ©2015 JCST, All Rights Reserved