
›› 2012, Vol. 27 ›› Issue (4): 687701.doi: 10.1007/s1139001212557
• Special Section on Theoretical Computer Science • Previous Articles Next Articles
YouMing Qiao^{1} (乔友明), Jayalal Sarma M.N.^{2}, and BangSheng Tang^{1} (唐邦晟)
[1] Dehn M. Über unendliche diskontinuierliche gruppen. MathematischeAnnalen, 1911, 71: 116144. [2] Adian S. The unsolvability of certain algorithmic problems inthe theory of groups. Trudy Moskov. Math. Obshch, 1957, 6:231298. [3] Babai L, Szemerèdi E. On the complexity of matrix groupproblems i. In Proc. IEEE Annual Symposium on Foundationsof Computer Science (FOCS), West Palm Beach,Florida, USA, October 2426, 1984, pp.229240. [4] Köbler J, Schöning U, Torán J. The Graph Isomorphism Problem:Its Structural Complexity. Boston: Birkhauser, 1993. [5] Chattopadhyay A, Torán J, Wagner F. Graph isomorphism isnot AC0 reducible to group isomorphism. In Proc. AnnualConference on Foundations of Software Technology and TheoreticalComputer Science (FSTTCS 2010), Chennai, India,Dec. 1518, 2010, pp.317326. [6] Babai L, Luks E M. Canonical labeling of graphs. In Proc.the 15th Annual ACM Symposium on Theory of Computing(STOC), Boston, Massachusetts, USA, April 2527, 1983,pp.171183. [7] Miller G L. On the nlogn isomorphism technique. In Proc.the 10th Annual ACM Symposium on Theory of Computing,San Diego, California, USA, May 13, 1978, pp.5158. [8] Lipton R J, Snyder L, Zalcstein Y. The complexity of wordand isomorphism problems for finite groups. Technical Report,John Hopkins, 1976. [9] Savage C. An O(n2) algorithm for abelian group isomorphism.Technical Report, North Carolina State University, 1980. [10] Vikas N. An O(n) algorithm for abelian pgroup isomorphismand an O(n log n) algorithm for abelian group isomorphism.Journal of Computer and System Sciences, 1996, 53(1): 19. [11] Kavitha T. Linear time algorithms for abelian group isomorphismand related problems. Journal of Computer and SystemSciences, 2007, 73(6): 986996. [12] Gall F L. Efficient isomorphism testing for a class of groupextensions. In Proc. the 26th International Symposiumon Theoretical Aspects of Computer Science (STACS 2009),Freiburg, Germany, February 2628, 2009, pp.625636. [13] Wilson J B. Decomposing pgroups via Jordan algebras. Journalof Algebra, 2009, 322(8): 26422679. [14] Wilson J B. Finding central decompositions of pgroups.Journal of Group Theory, 2009, 12(6): 813830. [15] Kayal N, Nezhmetdinov T. Factoring groups efficiently. InProc. the 36th International Colloquium on Automata, Languagesand Programming (ICALP 2009), Rhodes, Greece,July 512, 2009, pp.585596. [16] Wilson J B. Finding direct product decompositions in polynomialtime. 2010. http://arxiv.org/pdf/1005.0548.pdf. [17] Taunt D R. Remarks on the isomorphism problem in theoriesof construction of finite groups. Mathematical Proceedings ofthe Cambridge Philosophical Society, 1955, 51(1): 1624. [18] Menegazzo F. The number of generators of a finite group.Irish Math. Soc. Bulletin, 2003, 50: 117128. [19] Babai L. Equivalence of linear codes. Technical Report, Universityof Chicago, 2010. [20] Babai L, Codenotti P, Grochow J, Qiao Y. Towards efficientalgorithm for semisimple group isomorphism. In Proc. ACMSIAMAnnual Symposium of Discrete Algorithms (SODA),San Francisco, California, USA, January 2325, 2011. [21] Holt D F, Eick B, O’Brien E A. Handbook of ComputationalGroup Theory. London: Chapman and Hall/CRC, 2005. [22] Rotman J J. An Introduction to the Theory of Groups (4thedition). SpringerVerlag, 1995. [23] Serre J P. Linear Representations of Finite Groups. NewYork: SpringerVerlag, 1977. [24] R′onyai L. Computing the structure of finite algebras. Journalof Symbolic Computation, 1990, 9(3): 355373. [25] Shoup V. On the deterministic complexity of factoring polynomialsover finite fields. Information Processing Letters,1990, 33(5): 261267. [26] Steel A. A new algorithm for the computation of canonicalforms of matrices over fields. Journal of Symbolic Computation,1997, 24(34): 409432. [27] Seress A. Permutation Group Algorithms. Cambridge: CambridgeUniversity Press, 2003. [28] Babai L. Coset intersection in moderately exponential time.Chicago Journal of Theoretical Computer Science, to appear. [29] Luks E M. Hypergraph isomorphism and structural equivalenceof Boolean functions. In Proc. the 31st Annual ACMSymposium on Theory of Computing, Atlanta, Georgia, USA,May 14, 1999, pp.652658. [30] Kantor W M, Luks E M, Mark P D. Sylow subgroups in parallel.Journal of Algorithms, 1999, 31(1): 132195. [31] Babai L, Qiao Y. Polynomialtime isomorphism test forgroups with abelian Sylow towers. In Proc. the 29th InternationalSymposium on Theoretical Aspects of ComputerScience, Pairs, France, Feb. 28March 3, 2012, pp.453464. [32] Petrank E, Roth R M. Is code equivalence easy to decide?IEEE Trans. Information Theory, 1997, 43(5): 16021604. [33] Buchmann J, Schmidt A. Computing the structure of a finiteabelian group. Mathematics of Computation, 2005, 74(252):20172026. [34] Ranum A. The group of classes of congruent matrices with applicationto the group of isomorphisms of any abelian group.Transactions of the American Mathematical Society, 1907,8(1): 7191. 
No related articles found! 

