
›› 2012, Vol. 27 ›› Issue (5): 937949.doi: 10.1007/s1139001212753
Special Issue: Data Management and Data Mining
• Special Issue on Evolutionary Computation • Previous Articles Next Articles
PeiChann Chang^{1} (张百栈), WeiHsiu Huang^{1} (黄伟修), and ZhenZhen Zhang^{2} (张真真)
[1] Papadimitriou C H, Steglitz K. Combinatorial Optimization:Algorithms and Complexity. India: Dover Publications, 1998. [2] Garey M R, Graham R L, Johnson D S. Some NPcompletegeometric problems. In Proc. the 8th Annual ACM Symposium on Theory of Computing, May 1976, pp.1022. [3] Ozcan E, Erenturk M. A brief review of memetic algorithmsfor solving Euclidean 2D traveling salesman problem. In Proc.the 13th Turkish Symposium on Artificial Intelligence andNeural Networks, June 2004, pp.99108. [4] Sankoff D, Zheng C, Mu~noz A, Yang Z, Adam Z, Warren R,Choi V, Zhu Q. Issues in the reconstruction of gene order evolution. Journal of Computer Science and Technology, 2010,25(1): 1025. [5] Black T, Fogel D B, Michalewicz Z. Handbook on Evolutionary Computation. USA: Oxford University Press, 1997. [6] Laporte G. The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 1992, 59(3): 345358. [7] Onwubolu G C, Clerc M. Optimal path for automated drillingoperations by a new heuristic approach using particle swarmoptimization. International Journal of Production Research,2004, 42 (3): 473491. [8] Affenzeller M, Wanger S. A selfadaptive model for selectivepressure handling within the theory of genetic algorithms. InProc. the 9th EUROCAST, February 2003, pp.384393. [9] Budinich M. A selforganizing neural network for the traveling salesman problem that is competitive with simulatedannealing. Neural Computation, 1996, 8(2): 416424. [10] Liu G, He Y, Fang Y, Oiu Y. A novel adaptive search strategy of intensification and diversification in tabu search. InProc. International Conference on Neural Networks and Signal Processing, December 2003, pp.428431. [11] Bianchi L, Knowles J, Bowler N. Local search for the probabilistic traveling salesman problem: Correction to the 2poptand 1shift algorithms. European Journal of Operational Research, 2005, 162(1): 206219. [12] Chu S C, Roddick J F, Pan J S. Ant colony system with communication strategies. Information Sciences, 2004, 167 (14):6376. [13] Leung K S, Jin H D, Xu Z B. An expanding selforganizingneural network for the traveling salesman problem. Neurocomputing, 2004, 62: 267292. [14] Kirkpatrick S, Gelatt Jr. C D, Vecchi M P. Optimization bysimulated annealing. Science, 1983, 220(4598): 671680. [15] Grefenstette J, Gopal R, Rosimaita B, Gucht D V. Geneticalgorithms for the traveling salesman problem. In Proc. Int.Conf. Genetics Algorithms and Their Applications, October1985, pp.160168. [16] Braun H. On solving traveling salesman problems by geneticalgorithm. In Lecture Notes in Computer Science 496, Schwefel H P, Männer R (eds.), SpringerVerlag, pp.129133. [17] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs (3rd edition). Berlin, Germany: SpringerVerlag, 1996. [18] Fan J, Li D. An overview of data mining and knowledge discovery. Journal of Computer Science and Technology, 1998,13(4): 348368. [19] Moscato P, Norman M G. A memetic approach for the traveling salesman problem implementation of a computationalecology for combinatorial optimization on messagepassingsystems. In Proc. International Conference on Parallel Computing and Transputer Application, Sept. 1992, pp.177186. [20] Oliver I M, Smith D J, Holland J R C. A study of permutationcrossovers on the TSP. In Proc. the 2nd International Conference on Genetic Algorithm and Their Applications, July1987, pp.224230. [21] Whitely L D, Starkweather T, Fuquay D'A. Scheduling problems and traveling salesman: The genetic edge recombinationoperator. In Proc. the 3rd International Conference on Genetic Algorithms, June 1988, pp.133140. [22] Mühlenbein H, GorgesSchleuter M, Krämer O. Evolution algorithms in combinatorial optimization. Parallel Computing,1988, 7(1): pp.6585. [23] Nagata Y, Kobayashi S. Edge assembly crossover: A highpower genetic algorithm for the travelling salesman problem.In Proc. the 7th International Conference on Genetic Algorithms, July 1997, pp.450457. [24] Tao G, Michalewicz Z. Inverover operator for the TSP. InProc. the 5th Int. Conf. Parallel Problem Solving from Nature, September 1998, pp.803812. [25] Johnson D S, McGeoch L A. The traveling salesman problem:A case study in local optimization. In Local Search in Combinatorial Optimization, Aarts E, Lenstra J K (eds.), JohnWiley and Sons, Ltd., 1997, pp.215310. [26] Zou P, Zhou Z,Wan Y Y, Chen G L, Gu J. New metaheuristicfor combinatorial optimization problems: Intersection basedscaling. Journal of Computer Science and Technology, 2004,19(6): 740751. [27] Merz P. A comparison of memetic recombination operatorsfor the traveling salesman problem. In Proc. the Genetic andEvolutionary Computation Conference, July 2002, pp.472479. [28] Baraglia R, Hidalgo J I, Perego R. A hybrid heuristic for thetraveling salesman problem. IEEE Transactions on Evolutionary Computation, 2001, 5(6): 613622. [29] Tsai H K, Yang J M, Tsai Y F, Kao C Y. Some issues ofdesigning genetic algorithms for traveling salesman problems.Soft Computing, 2004, 8(10): 689697. [30] Goldberg D E, Korb B, Deb K. Messy genetic algorithms:Motivation, analysis, and first results. Complex Syst., 1989,3(5): 493530. [31] Goldberg D E, Deb K, Kargupta H, Hank G. Rapid accurateoptimization of difficult problems using fast messy genetic algorithms. In Proc. the 5th Int. Conf. Genetic Algorithms,June 1993, pp.5664. [32] Kujazew D, Golberg D E. OMEGAordering messy GA: Solving permutation problems with the fast messy genetic algorithm and random keys. In Proc. Genetic Evolutionary Computation Conf., July 2000, pp.181188. [33] Zaritsky A, Sipper M. The preservation of favored building blocks in the struggle for fitness: The Puzzle Algorithm. IEEE Transactions on Evolutionary Computation,2004, 8(5): 443455. [34] Chang P C, Chen S H, Fan C Y. Mining gene structures toinject artificial chromosomes for genetic algorithm in singlemachine scheduling problems. Applied Soft Computing, 2008,8(1): 767777. [35] Chang P C, Chen S H, Fan C Y, Chan C L. Genetic algorithm with artificial chromosomes for multiobjective flowshop scheduling problems. Applied Mathematics and Computation, 2008, 205(2): 550561. [36] Chang P C, Chen S H, Fan C Y, Mani V. Generating artificial chromosomes with probability control in genetic algorithm for machine scheduling problems. Annals of Operations Research, 2010, 180(1): 197211. [37] Kantardzic M. Data Mining: Concepts, Models, Methods,and Algorithms. Totowa, USA, WileyIEEE Press, 2003. [38] Sangkavichitr C, Chongstitvatana P. Fragment as a smallevidence of the building blocks existence. In Exploitationof Linkage Learning in Evolutionary Algorithms, Chen YP (ed.), Adaptation, Learning, and Optimization, SpringerVerlag Berlin Heidelberg, 2010, pp.544. [39] Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997,1(1): 5366. [40] Narendra P M, Fukunaga K. A branch and bound algorithmfor feature subset selection. IEEE Transactions on Computers, 1977, C26(9): 917922. [41] Skellam J G. Studies in statistical ecology: I. Spatial pattern.Biometrica, 1952, 39(3/4): 346362. [42] Pasti R, de Castro L N. A Neuroimmune network for solvingthe traveling salesman problem. In Proc. International JointConference on Neural Networks, July 2006, 6: 37603766. [43] Somhom S, Modares A, Enkawa T. A selforganizing modelfor the travelling salesman problem. Journal of the Operational Research Society, 1997, 48: 919928. [44] Smith J, Fogarty T C. Recombination strategy adaptation viaevolution of gene linkage. In Proc. the IEEE Conference onEvolutionary Computation, USA, May 1996, pp.826831. [45] Hahsler M, Hornik K. TSPInfrastructure for the travelingsalesperson problem. Journal of Statistical Software, 2007,23(2): 121. [46] Yao X. An empirical study of genetic operators in geneticalgorithms. Microprocessing and Microprogramming, 1993,38(15): 707714. [47] Dai H W, Yang Y, Li C, Shi J, Gao S, Tang Z. Quantum interference crossoverbased clonal selection algorithm and itsapplication to travelling salesman problem. IEICE Trans.Inf. & Syst., 2009, E92.D(1): 7885. [48] Chang P C, Huang W H, Ting C J. Developing a varietal GAwith ESMA strategy for solving the pick and place problemin printed circuit board assembly line. Journal of IntelligentManufacturing, 2010, DOI: 10.1007/s1084501004619. 
No related articles found! 

