[1] Storn R, Price K. Differential evolution —— A simple and e±-cient heuristic for global optimization over continuous spaces.Journal of Global Optimization, 1997, 11(4): 341-359.[2] Price K, Storn R, Lampinen J. Differential Evolution: APractical Approach to Global Optimization. Springer-Verlag,2005.[3] Chakraborty (ed.) U K. Advances in Differential Evolution.Springer-Verlag, 2008.[4] Das S, Suganthan P N. Differential evolution: A survey ofthe state-of-the-art. IEEE Trans. Evolutionary Computa-tion, 2011, 15(1): 4-31.[5] Das S, Abraham A, Chakraborty U K, Konar A. Differen-tial evolution using a neighborhood-based mutation operator.IEEE Trans. Evolutionary Computation, 2009, 13(3): 526-553.[6] Zhang J, Sanderson A C. JADE: Adaptive differential evolu-tion with optional external archive. IEEE Trans. Evolution-ary Computation, 2009, 13(5): 945-958.[7] Qin A K, Huang V L, Suganthan P N. Differential evolutionalgorithm with strategy adaptation for global numerical op-timization. IEEE Trans. Evolutionary Computation, 2009,13(2): 398-417.[8] Yang Z, Tang K, Yao X. Self-adaptive differential evolutionwith neighborhood search. In Proc. the 2008 IEEE Congresson Evolutionary Computation, June 2008, pp.1110-1116.[9] Gämperle R, Müller S D, Koumoutsakos P. A Parameterstudy for differential evolution. In Proc. WSEAS Interna-tional Conference on Advances in Intelligent Systems, FuzzySystems, Evolutionary Computation, 2002, pp.293-298.[10] Wang Y, C Z, Zhang Q. Differential evolution with compo-site trial vector generation strategies and control parameters.IEEE Trans. Evolutionary Computation, 2011, 15(1): 55-66.[11] Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: A com-parative study on numerical benchmark problems. IEEETrans. Evolutionary Computation, 2006, 10(6): 646-657.[12] Das S, Konar A, Chakraborty U K. Two improved differentialevolution schemes for faster global search. In Proc. the 2005Conf. Genetic and Evolutionary Computation, June 2005,pp.991-998.[13] Abbass H A. The self-adaptive Pareto differential evolutionalgorithm. In Proc. the 2002 IEEE Congress on Evolution-ary Computation, May 2002, pp.831-836.[14] Salman A, Engelbrecht A, Omran M. Empirical analysis ofself-adaptive differential evolution. European Journal of Ope-rational Research, 2007, 183(2): 785-804.[15] Yang Z, He J, Yao X. Making a difference to differential evo-lution. In Advances in Metaheuristics for Hard Optimization,Michalewicz, Z, Siarry P (eds.), Springer, 2008, pp.397-414.[16] Bäck T, Schwefel H P. An overview of evolutionary algo-rithms for parameter optimization. Evolutionary Computa-tion, 1993, 1(1): 1-23.[17] Yao X, Liu Y, Lin G. Evolutionary programming made faster.IEEE Trans. Evolutionary Computation, 1999, 3(2): 82-102.[18] Lee C Y, Yao X. Evolutionary programming using mutationsbased on the Lévy probability distribution. IEEE Trans.Evolutionary Computation, 2004, 8(1): 1-13.[19] Storn R. System design by constraint adaptation and diffe-rential evolution. IEEE Trans. Evolutionary Computation,1999, 3(1): 22-34.[20] Yang Z, Tang K, Yao X. Scalability of generalized adaptivedifferential evolution for large-scale continuous optimization.Soft Computing, 2011, 15(11): 2141-2155.[21] Wang Y, Cai Z, Zhang Q. Enhancing the search ability of dif-ferential evolution through orthogonal crossover. InformationSciences, 2012, 185(1): 153-177.[22] Lévy P. Théorie de l'addition des variables aléatoires.Gauthier-Villars Paris, 1937.[23] Gnedenko B, Kolmogorov A. Limit Distribution for Sumsof Independent Random Variables. Cambridge, MA, USA:Addition-Wesley, 1954.[24] Qin A K, Suganthan P N. Self-adaptive differential evolu-tion algorithm for numerical optimization. In Proc. the2005 IEEE Congress on Evolutionary Computation, Vol.2,September 2005, pp.1785-1791.[25] Peng F, Tang K, Chen G, Yao X. Population-based algorithmportfolios for numerical optimization. IEEE Trans. Evolu-tionary Computation, 2010, 14(5): 782-800.[26] Shen L, He J. A mixed strategy for evolutionary programmingbased on local fitness landscape. In Proc. the 2010 IEEECongress on Evolutionary Computation, July 2010, pp.1-8.[27] Yao X, Lin G, Liu Y. An analysis of evolutionary algorithmsbased on neighbourhood and step sizes. In Proc. the 6thInternational Conference on Evolutionary Programming VI,April 1997, pp.297-307.[28] Schwefel H P. Evolution and Optimum Seeking. John Wiley& Sons, 1995.[29] Suganthan P N, Hansen N, Liang J J, Deb K, Chen Y P, AugerA, Tiwari S. Problem definitions and evaluation criteria forthe CEC 2005 special session on real-parameter optimization.Technical Report, Nanyang Technological University, Singa-pore, 2005.[30] Yang Z, Tang K, Yao X. Large scale evolutionary optimizationusing cooperative coevolution. Information Sciences, 2008,178(15): 2985-2999.[31] Hansen N, Auger A, Finck S, Ros R. Real-parameter black-box optimization benchmarking 2010: Experimental setup.Institut National de Recherche en Informatique et en Automa-tique (INRIA), 2010.[32] Hansen N. Compilation of results on the 2005 CEC bench-mark function set. Technical Report, Computational Labora-tory, Institute of Computational Science, ETH Zurich, 2005.[33] Liu Y, Yao X, Zhao Q, Higuchi T. Scaling up fast evolu-tionary programming with cooperative coevolution. In Proc.the 2001 IEEE Congress on Evolutionary Computation, May2001, pp.1101-1108.[34] van den Bergh F, Engelbrecht A P. A cooperative approachto particle swarm optimization. IEEE Trans. EvolutionaryComputation, 2004, 8(3): 225-239.[35] Li X, Yao X. Cooperatively coevolving particle swarms forlarge scale optimization. IEEE Trans. Evolutionary Compu-tation, 2012, 16(2): 210-224. |