[1] Japaridze G. Introduction to computability logic. Annals ofPure and Applied Logic, 2003, 123(1/3): 1-99.[2] Bauer M S. A PSPACE-complete first order fragment of com-putability logic. http://arxiv.org/abs/1201.4856, Jan. 2012.[3] Japaridze G. Computability logic: A formal theory of inter-action. In Interactive Computation: The New Paradigm,Goldin D, Smolka S A, Wegner P (eds.), Springer, 2006,pp.183-223.[4] Japaridze G. In the beginning was game semantics. In Games:Unifying Logic, Language, and Philosophy, Majer O, Pietari-nen A V, Tulenheimo T (eds.), Springer, 2009, pp.249-350.[5] Japaridze G. Many concepts and two logics of algorithmicreduction. Studia Logica, 2009, 91(1): 1-24.[6] Japaridze G. Toggling operators in computability logic. The-oretical Computer Science, 2011, 412(11): 971-1004.[7] Japaridze G. A new face of the branching recurrence of com-putability logic. Applied Mathematics Letters, 2012, 25(11):1585-1589.[8] Japaridze G. The taming of recurrences in computability logicthrough cirquent calculus, Part I. Archive for MathematicalLogic, 2013, 52(1/2): 173-212.[9] Japaridze G. The taming of recurrences in computability logicthrough cirquent calculus, Part II. Archive for MathematicalLogic, 2013, 52(1/2): 213-259.[10] Kwon K, Hur S. Adding sequential conjunctions to Prolog. J.Compu. Tech. and Applicat., 2010, 1(1): 1-3.[11] Mezhirov I, Vereshchagin N. On abstract resource semanticsand computability logic. Journal of Computer and SystemSciences, 2010, 76(5): 356-372.[12] Xu W Y, Liu S Y. The countable versus uncountable branch-ing recurrences in computability logic. Journal of AppliedLogic, 2012, 10(4): 431-446.[13] Xu W Y, Liu S Y. The parallel versus branching recurrencesin computability logic. Notre Dame Journal of Formal Logic,2013, 54(1): 61-78. |