›› 2014, Vol. 29 ›› Issue (5): 849-869.doi: 10.1007/s11390-014-1473-2

Special Issue: Data Management and Data Mining

• Data Management and Data Mining • Previous Articles     Next Articles

Querying Big Data: Bridging Theory and Practice

Wenfei Fan1,2(樊文飞), Fellow, ACM, Jin-Peng Huai2,3(怀进鹏), Fellow, CCF, Member, ACM, IEEE   

  1. 1. School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U. K. ;
    2. International Research Center on Big Data, Beihang University, Beijing 100191, China;
    3. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2014-02-22 Revised:2014-08-05 Online:2014-09-05 Published:2014-09-05
  • About author:Wenfei Fan is the Chair of Web Data Management in the School of Informatics, University of Edinburgh, UK, and the director of the International Research Center on Big Data, Beihang University, Beijing. He received his Ph.D. degree in computer science from the University of Pennsylvania, USA, and B.S. and M.S. degrees from Peking University, Beijing. Prof. Fan is a fellow of the Royal Society of Edinburgh, UK, a fellow of the ACM, USA, a national professor of the 1 000-Talent Program, and a Yangtze River Scholar, China. His current research interests include database theory and systems, in particular big data, data quality, data fusion, distributed query processing, and social networks.
  • Supported by:

    This work was supported in part by the National Basic Research 973 Program of China under Grant No. 2014CB340302. Fan is also supported in part by the National Natural Science Foundation of China under Grant No. 61133002, the Guangdong Innovative Research Team Program under Grant No. 2011D005 and Shenzhen Peacock Program under Grant No. 1105100030834361, the Engineering and Physical Sciences Research Council of UK under Grant No. EP/J015377/1, and the National Science Foundation of USA under Grant No. III-1302212.

Big data introduces challenges to query answering, from theory to practice. A number of questions arise. What queries are ``tractable'' on big data? How can we make big data ``small'' so that it is feasible to find exact query answers? When exact answers are beyond reach in practice, what approximation theory can help us strike a balance between the quality of approximate query answers and the costs of computing such answers? To get sensible query answers in big data, what else do we necessarily do in addition to coping with the size of the data? This position paper aims to provide an overview of recent advances in the study of querying big data. We propose approaches to tackling these challenging issues, and identify open problems for future research.

[1] Abiteboul S, Hull R, Vianu V. Foundations of Databases. Addison-Wesley, 1995.

[2] Dalvi N N, Machanavajjhala A, Pang B. An analysis of structured data on the Web. PVLDB, 2012, 5(7): 680-691.

[3] Bienvenu M, ten Cate B, Lutz C, Wolter F. Ontology-based data access: A study through disjunctive datalog, CSP, and MMSNP. In Proc. the 32nd PODS, June 2013, pp.213-224.

[4] Sellis T K. Personalization in web search and data management. In proc. the 1st Int. Conf. Model and Data Engineering, September 2011, p.1.

[5] Papadimitriou C H. Computational Complexity. AddisonWesley, 1994.

[6] Hartmanis J, Stearns R E. On the computational complexity of algorithms. Trans. American Mathematical Society, 1965, 117(5): 285-306.

[7] Santos G. SSD ranking: The fastest solid state drives. http: // www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/, Aug. 2014.

[8] Fan W, Geerts F, Neven F. Making queries tractable on big data with preprocessing. PVLDB, 2013, 6(9): 685-696.

[9] Fan W, Geerts F, Libkin L. On scale independence for querying big data. In Proc. the 33rd PODS, June 2014, pp.51-62.

[10] Fan W, Wang X, Wu Y. Performance guarantees for distributed reachability queries. PVLDB, 2012, 5(11): 1304-1315.

[11] Fan W, Li J, Wang X, Wu Y. Query preserving graph compression. In Proc. ACM SIGMOD, May 2012, pp.157-168.

[12] Fan W, Wang X, Wu Y. Answering graph pattern queries using views. In Proc. the 30th ICDE, March 31-April 4, 2014 pp.184-195.

[13] Fan W, Wang X, Wu Y. Incremental graph pattern matching. ACM Trans. Database Systems, 2013, 38(3): Article No. 18.

[14] Ramalingam G, Reps T. On the computational complexity of dynamic graph problems. TCS, 1996, 158(1/2): 233-277.

[15] Fan W, Li J, Ma S, Tang N, Wu Y. Adding regular expressions to graph reachability and pattern queries. In Proc. the 27th ICDE, April 2011, pp.39-50.

[16] Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y. Graph pattern matching: From intractability to polynomial time. PVLDB, 2010, 3(1): 264-275.

[17] Ma S, Cao Y, Fan W, Huai J, Wo T. Strong simulation: Capturing topology in graph pattern matching. ACM Trans. Database Systems, 2014, 39(1): Article No. 4.

[18] Fan W, Wang X, Wu Y. Querying big graphs within bounded resources. In Proc. ACM SIGMOD, June 2014, pp.301-312.

[19] Fan W, Geerts F. Foundations of Data Quality Management. Morgan & Claypool Publishers, 2012.

[20] Fan W, Geerts F, Jia X, Kementsietsidis A. Conditional functional dependencies for capturing data inconsistencies. ACM Trans. Database Systems, 2008, 33(2): Article No. 6. 10 O Google. Knowledge Graph. http://www.google.co.uk/insidesearch/features/search/knowledge.html, Aug. 2014. 11 O Wikipedia. YAGO. http://en.wikipedia.org/wiki/YAGO (database), Aug. 2014. 12 O Wikipedia. Wiki. http://en.wikipedia.org/wiki/Wiki, Aug. 2014. 868 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

[21] Cao Y, Fan W, Yu W. Determining the relative accuracy of attributes. In Proc. ACM SIGMOD, June 2013, pp.565-576.

[22] Fan W, Geerts F. Relative information completeness. ACM Trans. Database Systems, 2010, 35(4): Article No. 27.

[23] Fan W, Geerts F, Wijsen J. Determining the currency of data. ACM Trans. Database Systems, 2012, 37(4): Article No. 25.

[24] Fan W, Gao H, Jia X, Li J, Ma S. Dynamic constraints for record matching. VLDB J., 2011, 20(4): 495-520.

[25] Cong G, Fan W, Geerts F, Jia X, Ma S. Improving data quality: Consistency and accuracy. In Proc. the 33rd VLDB, Sept. 2007, pp.315-326.

[26] Fan W, Li J, Ma S, Tang N, Yu W. Towards certain fixes with editing rules and master data. VLDB J., 2012, 21(2): 213-238.

[27] Fan W, Ma S, Tang N, Yu W. Interaction between record matching and data repairing. ACM J. Data and Information Quality, 2014, 4(4): Article No. 16.

[28] Fan W, Geerts F, Tang N, Yu W. Inferring data currency and consistency for conflict resolution. In Proc. the 29th ICDE, April 2013, pp.470-481.

[29] Greenlaw R, Hoover H J, Ruzzo W L. Limits to Parallel Computation: P-Completeness Theory. New York, USA: Oxford University Press, 1995.

[30] Johnson D S. A catalog of complexity classes. In Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), Cambridge, USA: The MIT Press, 1990, pp.67-161.

[31] Karloff H J, Suri S, Vassilvitskii S. A model of computation for MapReduce. In Proc. the 21st SODA, Jan. 2010, pp.938-948.

[32] Dorrigiv R, López-Ortiz A, Salinger A. Optimal speedup on a low-degree multi-core parallel architecture (LoPRAM). In Proc. the 20th SPAA, June 2008, pp.185-187.

[33] Suciu D, Tannen V. A query language for NC. J. Comput. Syst. Sci., 1997, 55(2): 299-321.

[34] Hellerstein J M. The declarative imperative: Experiences and conjectures in distributed logic. SIGMOD Record, 2010, 39(1): 5-19.

[35] Koutris P, Suciu D. Parallel evaluation of conjunctive queries. In Proc. the 30th PODS, June 2011, pp.223-234.

[36] Afrati F N, Ullman J D. Optimizing joins in a map-reduce environment. In Proc. the 13th EDBT, March 2010, pp.99-110.

[37] Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Commun. ACM, 2008, 51(1): 107-113.

[38] Armbrust M, Curtis K, Kraska T, Fox A, Franklin M J, Patterson D A. PIQL: Success-tolerant query processing in the cloud. PVLDB, 2011, 5(3): 181-192.

[39] Armbrust M, Fox A, Patterson D A, Lanham N, Trushkowsky B, Trutna J, Oh H. SCADS: Scale-independent storage for social computing applications. In Proc. the 4th CIDR, Jan. 2009.

[40] Armbrust M, Liang E, Kraska T, Fox A, Franklin M J, Patterson D. Generalized scale independence through incremental precomputation. In Proc. ACM SIGMOD, June 2013, pp.625-636.

[41] Fagin R, Lotem A, Naor M. Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences, 2003, 66(4): 614-656.

[42] Cao Y, Fan W, Wu T, Yu W. Bounded conjunctive queries. PVLDB, 2014, 7(12): 1231-1242.

[43] Milner R. Communication and Concurrency. NJ, USA: Prentice Hall, 1989.

[44] Brynielsson J, Högberg J, Kaati L, Moartenson C, Svenson P. Detecting social positions using simulation. In Proc. ASONAM, August 2010, pp.48-55.

[45] Cho J, Shivakumar N, Garcia-Molina H. Finding replicated Web collections. SIGMOD Rec., 2000, 29(2): 355-366.

[46] Nardo L D, Ranzato F, Tapparo F. The subgraph similarity problem. TKDE, 2009, 21(5): 748-749.

[47] Zou L, Chen L, Özsu M T. Distance-Join: Pattern match query in a large graph database. PVLDB, 2009, 2(1): 886-897.

[48] Henzinger M R, Henzinger T, Kopke P. Computing simulations on finite and infinite graphs. In Proc. the 36th FOCS, October 1995, pp.453-462.

[49] Jones N D. An introduction to partial evaluation. ACM Comput. Surv., 1996, 28(3): 480-503.

[50] Lenzerini M. Data integration: A theoretical perspective. In Proc. the 21st PODS, June 2002, pp.233-246.

[51] Halevy A Y. Answering queries using views: A survey. VLDB J., 2001, 10(4): 270-294.

[52] Ntoulas A, Cho J, Olston C. What's new on the Web? The evolution of the Web from a search engine perspective. In Proc. the 13th WWW, May 2004, pp.1-12.

[53] Fan W, Wang X, Wu Y, Deng D. Distributed graph simulation: Impossibility and possibility. PVLDB, 2014, 7(12): 1083-1094.

[54] Kruskal C P, Rudolph L, Snir M. A complexity theory of ef-ficient parallel algorithms. TCS, 1990, 71(1): 95-132.

[55] Tao Y, Lin W, Xiao X. Minimal MapReduce algorithms. In Proc. ACM SIGMOD, June 2013, pp.529-540.

[56] Bendersky M, Metzler D, Croft W. Learning concept importance using a weighted dependence model. In Proc. the 3rd WSDM, Feb. 2010, pp.31-40.

[57] Morris M, Teevan J, Panovich K. What do people ask their social networks, and why? A survey study of status message Q&A behavior. In Proc. the 28th CHI, April 2010, pp.1739-1748.

[58] Fan W, Wang X, Wu Y. Diversified top-k graph pattern matching. PVLDB, 2013, 6(13): 1510-1521.

[59] Gollapudi S, Sharma A. An axiomatic approach for result diversification. In Proc. the 18th WWW, April 2009, pp.381-390.

[60] Deng T, Fan W. On the complexity of query result diversifi-cation. PVLDB, 2013, 6(8): 577-588.

[61] Crescenzi P, Kann V, Halldórsson M. A compendium of NP optimization problems. http://www.nada.kth.se/?viggo/wwwcompendium/, Aug. 2014.

[62] Vazirani V V. Approximation Algorithms. Springer, 2003.

[63] Acharya S, Gibbons P B, Poosala V, Ramaswamy S. Join synopses for approximate query answering. In Proc. ACM SIGMOD, June 1999, pp.275-286.

[64] Babcock B, Chaudhuri S, Das G. Dynamic sample selection for approximate query processing. In Proc. ACM SIGMOD, June 2003, pp.539-550.

[65] Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. the 2nd KDD, August 1996, pp.226-231.

[66] Garofalakis M N, Gibbons P B. Wavelet synopses with error guarantees. In Proc. ACM SIGMOD, June 2002, pp.476-487.

[67] Gibbons P B, Matias Y. Synopsis data structures for massive data sets. In Proc. the 10th SODA, Jan. 1999, pp.909-910.

[68] Ioannidis Y E, Poosala V. Histogram-based approximation of set-valued query-answers. In Proc. the 25th VLDB, Sept. 1999, pp.174-185.

[69] Jagadish H V, Koudas N, Muthukrishnan S, Poosala V, Sevcik K C, Suel T. Optimal histograms with quality guarantees. In Proc. the 24th VLDB, August 2009, pp.275-286.

[70] Kaufman L, Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis. New York, USA: John Wiley, 1990. Wenfei Fan et al.: Querying Big Data 869

[71] Rösch P, Lehner W. Sample synopses for approximate answering of group-by queries. In Proc. the 12th EDBT, March 2009, pp.403-414.

[72] Vitter J S, Wang M. Approximate computation of multidimensional aggregates of sparse data using wavelets. In Proc. ACM SIGMOD, June 1999, pp.193-204.

[73] Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica I. BlinkDB: Queries with bounded errors and bounded response times on very large data. In Proc. the 8th EuroSys, April 2013, pp.29-42.

[74] Redman T. The impact of poor data quality on the typical enterprise. Commun. ACM, 1998, 41(2): 79-82.

[75] Shilakes C C, Tylman J. Enterprise information portals. Technical Report, Merrill Lynch, Inc., 1998.

[76] Miller Jr D W, Yeast J D, Evans R L. Missing prenatal records at a birth center: A communication problem quantified. In AMIA Annu. Symp. Proc., 2005, pp.535-539.

[77] Eckerson W W. Data quality and the bottom line: Achieving business success through a commitment to high quality data. Technical Report, The Data Warehousing Institute, 2002.

[78] Ma S, Fan W, Bravo L. Extending inclusion dependencies with conditions. TCS, 1998, 515: 64-95.

[79] Herzog T N, Scheuren F J, Winkler W E. Data Quality and Record Linkage Techniques. Springer, 2009.

[80] Chiang F, Miller R J. Discovering data quality rules. PVLDB, 2008, 1(1): 1166-1177.

[81] Fan W, Geerts F, Li J, Xiong M. Discovering conditional functional dependencies. TKDE, 2011, 23(5): 683-698.

[82] Golab L, Karloff H, Korn F, Srivastava D, Yu B. On generating near-optimal tableaux for conditional functional dependencies. PVLDB, 2008, 1(1): 376-390.

[83] Arenas M, Bertossi L, Chomicki J. Consistent query answers in inconsistent databases. In Proc. the 18th PODS, May 31-June 2, 1999, pp.68-79.

[84] Bohannon P, Fan W, Flaster M, Rastogi R. A cost-based model and effective heuristic for repairing constraints by value modification. In Proc. ACM SIGMOD, June 2005, pp.143-154.

[85] Yakout M, Elmagarmid A K, Neville J, Ouzzani M, Ilyas I F. Guided data repair. PVLDB, 2011, 4(5): 279-289.

[86] Fan W, Geerts F, Ma S, Müller H. Detecting inconsistencies in distributed data. In Proc. the 26th ICDE, March 2010, pp.64-75.

[87] Fan W, Li J, Tang N, Yu W. Incremental detection of inconsistencies in distributed data. TKDE, 2014, 26(6): 1367-1383.

[88] Bleiholder J, Naumann F. Data fusion. ACM Comput. Surv., 2008, 41(1): Article No. 1.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Mingye; Hong Enyu;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] Chen Shihua;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] Gao Qingshi; Zhang Xiang; Yang Shufan; Chen Shuqing;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] Chen Zhaoxiong; Gao Qingshi;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] Huang Heyan;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] Min Yinghua; Han Zhide;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[7] Tang Tonggao; Zhao Zhaokeng;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[8] Min Yinghua;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[9] Zhu Hong;. Some Mathematical Properties of the Functional Programming Language FP[J]. , 1987, 2(3): 202 -216 .
[10] Li Minghui;. CAD System of Microprogrammed Digital Systems[J]. , 1987, 2(3): 226 -235 .

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved