[1] Malewicz G, Austern M H, Bik A J, Dehnert J C, Horn I, Leiser N, Czajkowski G. Pregel: A system for large-scale graph processing. In Proc. the 2010 ACM SIGMOD International Conference on Management of Data, June 2010, pp.135-146.[2] Dhillon I S. Co-clustering documents and words using bipartite spectral graph partitioning. In Proc. the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2001, pp.269-274.[3] Zha H, He X, Ding C, Simon H, Gu M. Bipartite graph partitioning and data clustering. In Proc. the 10th International Conference on Information and Knowledge Management, August 2001, pp.25-32.[4] Gao B, Liu T Y, Zheng X, Cheng Q S, Ma W Y. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, August 2005, pp.41-50.[5] Gao B, Liu T Y, Feng G, Qin T, Cheng Q S, Ma W Y. Hierarchical taxonomy preparation for text categorization using consistent bipartite spectral graph copartitioning. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(9): 1263-1273.[6] Chen R, Shi J, Chen Y, Guan H, Zang B, Chen H. Powerlyra: Differentiated graph computation and partitioning on skewed graphs. Technical Report, IPADSTR-2013-001, Shanghai Jiao Tong University, 2013.[7] Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein J M. Distributed GraphLab: A framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment, 2012, 5(8): 716-727.[8] Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C. Powergraph: Distributed graph-parallel computation on natural graphs. In Proc. the 10th USENIX Symp. Operating Systems Design and Implementation, October 2012, pp.17-30.[9] Jain N, Liao G, Willke T L. Graphbuilder: Scalable graph ETL framework. In Proc. the 1st International Workshop on Graph Data Management Experiences and Systems, June 2013, Article No.4.[10] Chen R, Shi J, Zang B, Guan H. Bipartite-oriented distributed graph partitioning for big learning. In Proc. the 5th Asia-Paci c Workshop on Systems, June 2014, pp.14:1-14:7.[11] Chen R, Ding X, Wang P, Chen H, Zang B, Guan H. Computation and communication efficient graph processing with distributed immutable view. In Proc. the 23rd International Symposium on High-Performance Parallel and Distributed Computing, June 2014, pp.215-226.[12] Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 1998, 30(1): 107-117.[13] Schloegel K, Karypis G, Kumar V. Parallel multilevel algorithms for multi-constraint graph partitioning. In Proc. the 6th Int. Euro-Par Conf. Parallel Processing, August 2000, pp.296-310.[14] Ng A Y, Jordan M I,Weiss Y. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems, Dietterich T G, Becker S, Ghahramani Z (eds), MIT Press, 2002, pp.849-856.[15] LÜcking T, Monien B, Elsässer R. New spectral bounds on k-partitioning of graphs. In Proc. the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, July 2001, pp.255-262.[16] Stanton I, Kliot G. Streaming graph partitioning for large distributed graphs. In Proc. the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2012, pp.1222-1230.[17] Tsourakakis C, Gkantsidis C, Radunovic B, Vojnovic M. FENNEL: Streaming graph partitioning for massive scale graphs. In Proc. the 7th ACM International Conference on Web Search and Data Mining, February 2014, pp.333-342.[18] Abou-Rjeili A, Karypis G. Multilevel algorithms for partitioning power-law graphs. In Proc. the 20th International Parallel and Distributed Processing Symposium, April 2006, p.124.[19] Leskovec J, Lang K J, Dasgupta A, Mahoney M W. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 2009, 6(1): 29-123.[20] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30-37.[21] Kumar A, Beutel A, Ho Q, Xing E P. Fugue: Slow-workeragnostic distributed learning for big models on big data. In Proc. the 17th International Conference on Arti cial Intelligence and Statistics, April 2014, pp.531-539. |