[1] Jansen B J, Zhang M, Sobel K, Chowdury A. Twitter power:Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 2009, 60(11):2169-2188.[2] Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. Journal of Computational Science, 2011, 2(1):1-8.[3] Zhao J, Dong L, Wu J, Xu K. MoodLens:An emoticonbased sentiment analysis system for Chinese tweets. In Proc. the 18th KDD, Aug. 2012, pp.1528-1531.[4] Jiang L, Yu M, Zhou M, Liu X, Zhao T. Target-dependent Twitter sentiment classification. In Proc. the 49th ACL, Jun. 2011, pp.151-160.[5] Liu K L, Li W J, Guo M. Emoticon smoothed language models for Twitter sentiment analysis. In Proc. the 26th AAAI, Jul. 2012.[6] Bermingham A, Smeaton A F. Classifying sentiment in microblogs:Is brevity an advantage? In Proc. the 19th ACM International Conference on Information and Knowledge Management, Oct. 2010, pp.1833-1836.[7] Kouloumpis E, Wilson T, Moore J. Twitter sentiment analysis:The good the bad and the OMG! In Proc. the 5th ICWSM, Jul. 2011.[8] Barbosa L, Feng J. Robust sentiment detection on Twitter from biased and noisy data. In Proc. the 23rd International Conference on Computational Linguistics:Posters, Aug. 2010, pp.36-44.[9] Pak A, Paroubek P. Twitter as a corpus for sentiment analysis and opinion mining. In Proc. LREC, May 2010.[10] Go A, Bhayani R, Huang L. Twitter sentiment classification using distant supervision. Technical Report, Stanford University, 2009.[11] Weichselbraun A, Gindl S, Scharl A. Enriching semantic knowledge bases for opinion mining in big data applications. Knowledge-Based Systems, 2014, 69:78-85.[12] Nielsen F Å. A new ANEW:Evaluation of a word list for sentiment analysis in microblogs. arXiv:1103.2903, 2011. http://arxiv.org/abs/1103.2903v1, Jun. 2015.[13] Esuli A, Sebastiani F. SENTIWORDNET:A publicly available lexical resource for opinion mining. In Proc. the 5th LREC, May 2006, pp.417-422.[14] Hu X, Tang J, Gao H, Liu H. Unsupervised sentiment analysis with emotional signals. In Proc. the 22nd International Conference on World Wide Web, May 2013, pp.607-618.[15] Cui A, Zhang M, Liu Y, Ma S. Emotion tokens:Bridging the gap among multilingual Twitter sentiment analysis. In Proc. the 7th AIRS, Dec. 2011, pp.238-249.[16] Bifet A, Frank E. Sentiment knowledge discovery in Twitter streaming data. In Proc. the 13th DS, Oct. 2010, pp.1-15.[17] Davidov D, Tsur O, Rappoport A. Enhanced sentiment learning using Twitter hashtags and smileys. In Proc. the 23rd International Conference on Computational Linguistics:Posters, Aug. 2010, pp.241-249.[18] Bengio Y, Ducharme R, Vincent P, Jauvin C. A neural probabilistic language model. Journal of Machine Learning Research, 2003, 3:1137-1155.[19] Mnih A, Hinton G E. A scalable hierarchical distributed language model. In Proc. the 22nd Advances in Neural Information Processing Systems, Dec. 2008, pp.1081-1088.[20] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. arXiv:1310.4546, 2013. http://arxiv.org/abs/1310.4546v1, Jun. 2015.[21] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv:1301.3781, 2013. http://arxiv.org/abs/1301.3781v3, Jun. 2015.[22] Zhang H P, Yu H K, Xiong D Y, Liu Q. HHMM-based Chinese lexical analyzer ICTCLAS. In Proc. the 2nd SIGHAN Workshop on Chinese Language Processing, Volume 17, Jul. 2003, pp.184-187.[23] Chang C C, Lin C J. LIBSVM:A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3):27:1-27:27.[24] Zhang W, Liu J, Guo X. Sentiment Lexicon for Students. Encyclopedia of China Publishing House, 2004. (in Chinese) |