[1] Vapnik V N. The Nature of Statistical Learning Theory (2nd edition). Springer, 2000.[2] Guyon I, Gunn S, Nikravesh M, Zadeh L A. Feature Extraction:Foundations and Applications (1st edition). Springer, 2006.[3] Saeys Y, Inza I, Larranagal P. A review of feature selection techniques in bioinformatics. Bioinformatics, 2007, 23(19):2507-2517.[4] Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46(1/2/3):389-422.[5] Rakotomamonjy A. Variable selection using SVM based criteria. The Journal of Machine Learning Research, 2003, 3:1357-1370.[6] Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V. Feature selection for SVMs. In Advances in Neural Information Processing Systems 13, Leen T K, Dietterich T G, Tresp V (eds.), Massachusetts Institute of Technology, 2001, pp.668-674.[7] Peleg D, Meir R. A feature selection algorithm based on the global minimization of a generalization error bound. In Advances in Neural Information Processing Systems 17, Saul L K, Weiss Y, Bottou L (eds.), Massachusetts Institute of Technology, 2005, pp.1065-1072.[8] Bradley P S, Mangasarian O L. Feature selection via concave minimization and support vector machines. In Proc. the 5th International Conference on Machine Learning, July 1998, pp.82-90.[9] Weston J, Elisseeff A, Schölkopf B, Tipping M. Use of the zero norm with linear models and kernel methods. The Journal of Machine Learning Research, 2003, 3:1439-1461.[10] Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 1998, 209(1/2):237-260.[11] Chan A B, Vasconcelos N, Lanckriet G R G. Direct convex relaxations of sparse SVM. In Proc. the 24th International Conference on Machine Learning, June 2007, pp.145-153.[12] Fung G M, Mangasarian O L. A feature selection newton method for support vector machine classification. Computational Optimization and Applications, 2004, 28(2):185-202.[13] Bi J B, Bennett K, Embrechts M, Breneman C, Song M H. Dimensionality reduction via sparse support vector machines. The Journal of Machine Learning Research, 2003, 3:1229-1243.[14] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological), 1996, 58(1):267-288.[15] Neumann J, Schnörr C, Steidl G. Combined SVM-based feature selection and classification. Machine Learning, 2005, 61(1/2/3):129-150.[16] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 2007, 14(10):707-710.[17] Chartrand R. Nonconvex regularization for shape preservation. In Proc. the IEEE International Conference on Image Processing, September 16-October 19, 2007, pp.293-296.[18] Xu Z B, Zhang H, Wang Y, Chang X Y, Liang Y. L1/2 regularization. Science China Information Sciences, 2010, 53(6):1159-1169.[19] Liu J L, Li J P, Xu W X, Shi Y. A weighted Lq adaptive least squares support vector machine classifiers-Robust and sparse approximation. Expert Systems with Applications, 2011, 38(3):2253-2259.[20] Chen W J, Tian Y J. Lp-norm proximal support vector machine and its applications. Procedia Computer Science, 2010, 1(1):2417-2423.[21] Rakotomamonjy A, Flamary R, Gasso G, Canu S. lp-lq penalty for sparse linear and sparse multiple kernel multitask learning. IEEE Transactions on Neural Networks, 2011, 22(8):1307-1320.[22] Liu Y F, Zhang H H, Park C, Ahn J. Support vector machines with adaptive Lq penalty. Computational Statistics and Data Analysis, 2007, 51(12):6380-6394.[23] Liu Z Q, Lin S L, Tan M. Sparse support vector machines with L p penalty for biomarker identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7(1):100-107.[24] Tan J Y, Zhang Z Q, Zhen L, Zhang C H, Deng N Y. Adaptive feature selection via a new version of support vector machine. Neural Computing and Applications, 2013, 23(3/4):937-945.[25] Tian Y J, Yu J, Chen W J. lp-norm support vector machine with CCCP. In Proc. the 7th International Conference on Fuzzy Systems and Knowledge Discovery, August 2010, pp.1560-1564.[26] Liu J W, Liu Y. Non-integer norm regularization SVM via Legendre-Fenchel duality. Neurocomputing, 2014, 144:537-545.[27] Chen X J, Xu F M, Ye Y Y. Lower bound theory of nonzero entries in solutions of l2-lp minimization. SIAM J. Sci. Comput., 2010, 32(5):2832-2852.[28] Zhang C H, Shao Y H, Tan J Y, Deng N Y. Mixed-norm linear support vector machine. Neural Computing and Applications, 2013, 23(7):2159-2166.[29] Li D H, Wu L, Sun Z, Zhang X J. A constrained optimization reformulation and a feasible descent direction method for L1/2 regularization. Computational Optimization and Applications, 2014, 59(1/2):263-284.[30] Newman D J, Hettich S, Blake C L, Merz C J. UCI repository of machine learning databases. Technical Report 9702, Department of Information and Computer Science, University of California, Irvine, 1998. http://archive.ics.uci.edu/ml/, Nov. 2016 |