[1] Armbrust M, Fox A, Griffith R et al. A view of cloud computing. Communications of the ACM, 2010, 53(4):50-58.[2] Tanenbaum A S, Woodhull A S. Operating Systems Design and Implementation (3rd edition). Pearson, 2006.[3] Auslander M A, Larkin D C, Scherr A L. The evolution of the MVS operating system. IBM Journal of Research and Development, 1981, 25(5):471-482.[4] Deitel H M, Deitel P J, Choffnes D. Operating Systems. Pearson/Prentice Hall, 2004.[5] Bic L F, Shaw A C. Operating Systems Principles. Prentice Hall, 2003.[6] Silberschatz A, Galvin P B, Gagne G. Operating System Concepts. John Wiley & Sons Ltd., 2008.[7] Hu T H. A Prehistory of the Cloud. MIT Press, 2016.[8] Mell P, Grance T. SP800-145. The NIST definition of cloud computing. Communications of the ACM, 2010, 53(6):50.[9] Zheng W. An introduction to Tsinghua cloud. Science China Information Sciences, 2010, 53(7):1481-1486.[10] Hindman B, Konwinski A, Zaharia M et al. Mesos:A platform for fine-grained resource sharing in the data center. In Pro. USENIX Conference on Networked Systems Design and Implementation, Mar.31-Apr.1, 2013, pp.429-483.[11] Schwarzkopf M, Konwinski A, Abd-El-Malek M et al. Omega:Flexible, scalable schedulers for large compute clusters. In Proc. ACM European Conference on Computer Systems, Apr. 2013, pp.351-364.[12] Verma A, Pedrosa L, Korupolu M et al. Large-scale cluster management at Google with Borg. In Proc. the 10th European Conference on Computer Systems, Apr. 2015, pp.18:1-18:17.[13] Dean J, Ghemawat S. MapReduce:Simplified data processing on large clusters. In Proc. the 6th Symposium on Operating Systems Design & Implementation, Dec. 2004, pp.137-150.[14] Ghemawat S, Gobioff H, Leung S T. The Google file system. ACM SIGOPS Operating Systems Review, 2003, 37(5):29-43.[15] Chang F, Dean J, Ghemawat S et al. Bigtable:A distributed storage system for structured data. ACM Transactions on Computer Systems (TOCS), 2008, 26(2):205-218.[16] Baker J, Bond C, Corbett J et al. Megastore:Providing scalable, highly available storage for interactive services. In Proc. the 5th Biennial Conference on Innovative Data Systems Research, January 2011, pp.223-234.[17] Corbett J C, Dean J, Epstein M et al. Spanner:Google's globally distributed database. ACM Transactions on Computer Systems (TOCS), 2013, 31(3):8:1-8:22.[18] Yu Y, Isard M, Fetterly D et al. DryadLINQ:A system for general-purpose distributed data-parallel computing using a high-level language. In Proc. the 8th USENIX Symposium on Operating Systems Design and Implementation, Dec. 2008, pp.1-14.[19] Isard M, Budiu M, Yu Y et al. Dryad:Distributed dataparallel programs from sequential building blocks. ACM SIGOPS Operating Systems Review, 2007, 41(3):59-72.[20] Zaharia M, Chowdhury M, Das T et al. Resilient distributed datasets:A fault-tolerant abstraction for in-memory cluster computing. In Proc. the 9th USENIX Conference on Networked Systems Design and Implementation, Apr. 2012, pp.141-146.[21] Power R, Li J. Piccolo:Building fast, distributed programs with partitioned tables. In Proc. the 9th USENIX Symposium on Operating Systems Design and Implementation, October 2010, pp.293-306.[22] Melnik S, Gubarev A, Long J J et al. Dremel:Interactive analysis of web-scale datasets. Communications of the ACM, 2011, 54(6):114-123.[23] Peng D, Dabek F. Large-scale incremental processing using distributed transactions and notifications. In Proc. the 9th USENIX Symposium on Operating Systems Design and Implementation, October 2010, pp.251-264.[24] Neumeyer L, Robbins B, Nair A et al. S4:Distributed stream computing platform. In Proc. the 10th IEEE International Conference on Data Mining Workshops, Dec. 2010, pp.170-177.[25] Viglas S, Naughton J F. Rate-based query optimization for streaming information sources. In Proc. ACM SIGMOD International Conference on Management of Data, Jun. 2002, pp.37-48.[26] Shen H, Zhang Y. Improved approximate detection of duplicates for data streams over sliding windows. Journal of Computer Science and Technology, 2008, 23(6):973-987.[27] Li Y, Chen F H, Sun X et al. Self-adaptive resource management for large-scale shared clusters. Journal of Computer Science and Technology, 2010, 25(5):945-957.[28] Hunt P, Konar M, Junqueira F P et al. ZooKeeper:Wait-free coordination for Internet-scale systems. In Proc. USENIX Annual Technical Conference, Jun. 2010.[29] Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. In Proc. USENIX Annual Technical Conference, Jun. 2014, pp.305-319.[30] Lamport L. Paxos made simple. ACM SIGACT News, 2001, 32(4):18-25.[31] Barham P, Dragovic B, Fraser K et al. Xen and the art of virtualization. ACM SIGOPS Operating Systems Review, 2003, 37(5):164-177.[32] Ben-Yehuda M, Day M D, Dubitzky Z et al. The turtles project:Design and implementation of nested virtualization. In Proc. the 9th USENIX Conference on Operating Systems Design and Implementation, Oct. 2010, pp.423-436.[33] Xiao Z, SongW, Chen Q. Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(6):1107-1117.[34] Kivity A, Laor D, Costa G et al. OSv-Optimizing the operating system for virtual machines. In Proc. USENIX Annual Technical Conference, June 2014, pp.61-72.[35] Ren S, Tan L, Li C et al. Samsara:Efficient deterministic replay in multiprocessor environments with hardware virtualization extensions. In Proc. USENIX Annual Technical Conference, June 2016, pp.551-564.[36] Chen H, Wang X, Wang Z et al. DMM:A dynamic memory mapping model for virtual machines. Science China Information Sciences, 2010, 53(6):1097-1108.[37] Zhao X, Yin J, Chen Z et al. vSpec:Workload-adaptive operating system specialization for virtual machines in cloud computing. Science China Information Sciences, 2016, 59(9):92-105.[38] Wang X, Sun Y, Luo Y et al. Dynamic memory paravirtualization transparent to guest OS. Science China Information Sciences, 2010, 53(1):77-88.[39] Lu L, Zhang Y, Do T et al. Physical disentanglement in a container-based file system. In Proc. the 11th USENIX Symposium on Operating Systems Design and Implementation, Oct. 2014, pp.81-96.[40] Arnautov S, Trach B, Gregor F et al. SCONE:Secure Linux containers with Intel SGX. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.689-704.[41] Banga G, Druschel P, Mogul J C. Resource containers:A new facility for resource management in server systems. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Feb. 1999, pp.45-58.[42] Pedro G L, Alberto M, Dick E et al. Edge-centric computing:Vision and challenges. ACM SIGCOMM Computer Communication Review, 2015, 45(5):37-42.[43] Shi W, Cao J, Zhang Q et al. Edge computing:Vision and challenges. IEEE Internet of Things Journal, 2016, 3(5):637-646.[44] Dragojevi? A, Narayanan D, Castro M et al. FaRM:Fast remote memory. In Proc. USENIX Symposium on Networked Systems Design and Implementation, Apr. 2014, pp.401-414.[45] Mitchell C, Geng Y, Li J. Using one-sided RDMA reads to build a fast, CPU-efficient key-value store. In Proc. USENIX Annual Technical Conference, June 2013, pp.103-114.[46] Jose J, Subramoni H, Luo M et al. Memcached design on high performance RDMA capable interconnects. In Proc. International Conference on Parallel Processing, Sept. 2011, pp.743-752.[47] Greenberg A, Hamilton J R, Jain N et al. VL2:A scalable and flexible data center network. ACM SIGCOMM Computer Communication Review, 2009, 39(6):51-62.[48] Paraiso F, Haderer N,Merle P et al. A federated multi-cloud PaaS infrastructure. In Proc. the 5th IEEE International Conference on Cloud Computing, Jun. 2012, pp.392-399.[49] Eguro K, Venkatesan R. FPGAs for trusted cloud computing. In Proc. the 22nd International Conference on Field Programmable Logic and Applications, Aug. 2012, pp.63-70.[50] Hutchings B L, Franklin R, Carver D. Assisting network intrusion detection with reconfigurable hardware. In Proc. the 10th IEEE Symposium on Field-Programmable Custom Computing Machines, Apr. 2002, pp.111-120.[51] Chalamalasetti S R, Lim K, Wright M et al. An FPGA Memcached appliance. In Proc. ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Feb. 2013, pp.245-254.[52] Huang M, Wu D, Yu C H et al. Programming and runtime support to blaze FPGA accelerator deployment at datacenter scale. In Proc. ACM Symposium on Cloud Computing, Oct. 2016, pp.456-469.[53] Wang X M, Thota S. A resource-efficient communication architecture for chip multiprocessors on FPGAs. Journal of Computer Science and Technology, 2011, 26(3):434-447.[54] Dong Y, Xue M, Zheng X et al. Boosting GPU virtualization performance with hybrid shadow page tables. In Proc. USENIX Annual Technical Conference, July 2015, pp.517-528.[55] Zhang K, Chen R, Chen H. NUMA-aware graph-structured analytics. In Proc. the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Feb. 2005, pp.183-193.[56] Mao Y, Kohler E, Morris R T. Cache craftiness for fast multicore key-value storage. In Proc. ACM European conference on Computer Systems, Apr. 2012, pp.183-196.[57] Tu S, Zheng W, Kohler E et al. Speedy transactions in multicore in-memory databases. In Proc. ACM Symposium on Operating Systems Principles, Nov. 2013, pp.18-32.[58] Zhang G, HornW, Sanchez D. Exploiting commutativity to reduce the cost of updates to shared data in cache-coherent systems. In Proc. IEEE/ACM International Symposium on Microarchitecture, Dec. 2015, pp.13-25.[59] Wang Z, Qian H, Li J et al. Using restricted transactional memory to build a scalable in-memory database. In Proc. the 9th European Conference on Computer Systems, Apr. 2014, Article No. 26.[60] Russell R M. The CRAY-1 computer system. Communications of the ACM, 1978, 21(1):63-72.[61] Barik R, Zhao J, Sarkar V. Efficient selection of vector instructions using dynamic programming. In Proc. IEEE/ACM International Symposium on Microarchitecture, Dec. 2010, pp.201-212.[62] Klimovitski A. Using SSE and SSE2:Misconceptions and reality. Intel Developer Update Magazine, Mar. 2001. http://saluc.engr.uconn.edu/refs/process/intel/ssesse2.pdf, Feb.2017.[63] Intel I. Intelr SSE4 Programming Reference, D91561-103, 2007. http://software.intel.com/sites/default/files/m/8/6/8/D9156103.pdf, Feb. 2017.[64] Tian C, Zhou H, He Y et al. A dynamic Mapreduce scheduler for heterogeneous workloads. In Proc. International Conference on Grid and Cooperative Computing, Aug. 2009, pp.218-224.[65] Sun N, Liu W, Liu H et al. Dawning-1000 PROOS distributed operating system. Journal of Computer Science and Technology, 1997, 12(2):160-166[66] Zhang L, Litton J, Cangialosi F et al. Picocenter:Supporting long-lived, mostly-idle applications in cloud environments. In Proc. the 11th European Conference on Computer Systems, Apr. 2016, pp.37:1-37:16.[67] Canali C, Lancellotti R. Improving scalability of cloud monitoring through PCA-based clustering of virtual machines. Journal of Computer Science and Technology, 2014, 29(1):38-52.[68] Le K, Bianchini R, Zhang J et al. Reducing electricity cost through virtual machine placement in high performance computing clouds. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis, Nov. 2011.[69] Chun B G, Ihm S, Maniatis P et al. CloneCloud:Elastic execution between mobile device and cloud. In Proc. the 6th European Conference on Computer Systems, Apr. 2011, pp.301-314.[70] Jin H, Deng L, Wu S et al. Live virtual machine migration with adaptive, memory compression. In Proc. IEEE International Conference on Cluster Computing and Workshops, Aug. 2009.[71] Ye K, Jiang X, Huang D et al. Live migration of multiple virtual machines with resource reservation in cloud computing environments. In Proc. IEEE International Conference on Cloud Computing, Jul. 2011, pp.267-274.[72] Malewicz G, Austern M H, Bik A J et al. Pregel:A system for large-scale graph processing. In Proc. ACM SIGMOD International Conference on Management of Data, Jun. 2010, pp.135-146.[73] Kyrola A, Blelloch G, Guestrin C. GraphChi:Large-scale graph computation on just a PC. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Oct. 2012, pp.31-46.[74] Girod L, Mei Y, Newton R et al. XStream:A signaloriented data stream management system. In Proc. the 24th IEEE International Conference on Data Engineering, Apr. 2008, pp.1180-1189.[75] Low Y, Bickson D, Gonzalez J et al. Distributed GraphLab:A framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment, 2012, 5(8):716-727.[76] Chen R, Shi J, Chen Y et al. PowerLyra:Differentiated graph computation and partitioning on skewed graphs. In Proc. European Conference on Computer Systems, Apr. 2015.[77] Zhang M, Wu Y, Chen K et al. Exploring the hidden dimension in graph processing. In Proc. the 12th USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.285-300.[78] Zhu X, Chen W, Zheng W et al. Gemini:A computationcentric distributed graph processing system. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.301-316.[79] Gonzalez J E, Xin R S, Dave A et al. GraphX:Graph processing in a distributed dataflow framework. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Oct. 2014, pp.599-613.[80] Abadi M, Barham P, Chen J et al. TensorFlow:A system for large-scale machine learning. In Proc. the 12th USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.265-283.[81] Nesbit K J, Moreto M, Cazorla F J et al. Multicore resource management. IEEE Micro, 2008, 28(3):6-16.[82] Bolte M, Sievers M, Birkenheuer G et al. Non-intrusive virtualization management using libvirt. In Proc. European Design and Automation Association Conference on Design, Automation and Test in Europe, Mar. 2010, pp.574-579.[83] Tanenbaum A S, Kaashoek M F, van Renesse R et al. The Amoeba distributed operating system-A status report. Computer Communications, 1991, 14(6):324-335[84] Vavilapalli V K, Murthy A C, Douglas C et al. Apache Hadoop YARN:Yet another resource negotiator. In Proc. ACM Symposium on Cloud Computing, Oct. 2013, pp.5:1-5:16.[85] Burns B, Grant B, Oppenheimer D et al. Borg, Omega, and Kubernetes. ACM Queue, 2016, 14(1):70-93[86] Zhang Z, Li C, Tao Y et al. Fuxi:A fault-tolerant resource management and job scheduling system at Internet scale. Proceedings of the VLDB Endowment, 2014, 7(13):1393-1404[87] Harter T, Salmon B, Liu R et al. Slacker:Fast distribution with lazy docker containers. In Proc. USENIX Conference on File and Storage Technologies, February 2016.[88] Singh B, Srinivasan V. Containers:Challenges with the memory resource controller and its performance. In Proc. Ottawa Linux Symposium, June 2007.[89] Nikolaev R, Back G. VirtuOS:An operating system with kernel virtualization. In Proc. ACM Symposium on Operating Systems Principles, Nov. 2013, pp.116-132.[90] Soltesz S, Pötzl H, Fiuczynski M E et al. Containerbased operating system virtualization:A scalable, highperformance alternative to hypervisors. ACM SIGOPS Operating Systems Review, 2007, 41(3):275-287.[91] Steinberg U, Kauer B. NOVA:A microhypervisor-based secure virtualization architecture. In Proc. European Conference on Computer Systems, Apr. 2010, pp.209-222.[92] Boyd-Wickizer S, Clements A T, Mao Y et al. An analysis of Linux scalability to many cores. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Oct. 2010, pp.86-93.[93] Colmenares J A, Bird S, Eads G et al. Tessellation operating system:Building a real-time, responsive, high-throughput client OS for many-core architectures. In Proc. IEEE Hot Chips Symposium, Aug. 2011.[94] Baumann A, Peter S, Schüpbach A et al. Your computer is already a distributed system. Why isn't your OS? In Proc. the 12th Conference on Hot Topics in Operating Systems, May 2009.[95] Wentzlaff D, Agarwal A. Factored operating systems (FOS):The case for a scalable operating system for multicores. ACM SIGOPS Operating Systems Review, 2009, 43(2):76-85.[96] Grandl R, Chowdhury M, Akella A et al. Altruistic scheduling in multi-resource clusters. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.65-80.[97] Grandl R, Kandula S, Rao S et al. GRAPHENE:Packing and dependency-aware scheduling for data-parallel clusters. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.81-98.[98] Gog I, Schwarzkopf M, Gleave A et al. Firmament:Fast, centralized cluster scheduling at scale. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.99-115.[99] Jyothi S A, Curino C, Menache I et al. Morpheus:Towards automated SLOs for enterprise clusters. In Proc. USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.117-134.[100] Zhou F F, Ma R H, Li J et al. Optimizations for high performance network virtualization. Journal of Computer Science and Technology, 2016, 31(1):107-116.[101] Tang H, Mu S, Huang J et al. Zip:An algorithm based on loser tree for common contacts searching in large graphs. Journal of Computer Science and Technology, 2015, 30(4):799-809.[102] Ma C, Yan D, Wang Y et al. Advanced graph model for tainted variable tracking. Science China Information Sciences, 2013, 56(11):1-12. |