[1] Mell P M, Grance T. The NIST definition of cloud computing. Communications of the ACM, 2010, 53(6):Article No. 50.[2] Fu Z J, Shu J G, Sun X M, Zhang D X. Semantic keyword search based on trie over encrypted cloud data. In Proc. the 2nd Int. Workshop on Security in Cloud Computing, June 2014, pp.59-62.[3] Fu Z J, Ren K, Shu J G, Sun X M, Huang F X. Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel and Distributed Systems, 2016, 27(9):2546-2559.[4] Liu Q, Tan C C, Wu J, Wang G J. Cooperative private searching in clouds. Journal of Parallel and Distributed Computing, 2012, 72(8):1019-1031.[5] Liu Q, Tan C C, Wu J, Wang G J. Towards differential query services in costefficient clouds. IEEE Trans. Parallel and Distributed Systems, 2014, 25(6):1648-1658.[6] Sweeney L. k-anonymity:A model for protecting privacy. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2002, 10(5):557-570.[7] Niu B, Li Q H, Zhu X Y, Cao G H, Li H. Achieving k-anonymity in privacy-aware location-based services. In Proc. IEEE INFOCOM, April 27-May 2, 2014, pp.754-762.[8] Yi X, Paulet R, Bertino E, Varadharajan V. Practical approximate k nearest neighbor queries with location and query privacy. IEEE Trans. Knowledge and Data Engineering, 2016, 28(6):1546-1559.[9] Kanungo T, Mount D M, Netanyahu N S, Piatko C D, Silverman R, Wu A Y. An efficient k-means clustering algorithm:Analysis and implementation. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(7):881-892.[10] Guo Y H. Active instance sampling via matrix partition. In Proc. NIPS, December 2010, pp.802-810.[11] Hamerly G. Making k-means even faster. In Proc. SIAM Int. Conf. Data Mining, April 2010, pp.130-140.[12] Pass G, Chowdhury A, Torgeson C. A picture of search. In Proc. the 1st Int. Conf. Scalable Information Systems, May 30-June 1, 2006.[13] Gates A F, Natkovich O, Chopra S, Kamath P, Narayanamurthy S M, Olston C, Reed B, Srinivasan S, Srivastava U. Building a high-level dataflow system on top of MapReduce:The pig experience. In Proc. VLDB Endowment, August 2009, pp.1414-1425.[14] Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare:Sharing across multiple queries in MapReduce. In Proc. VLDB Endowment, September 2010, pp.494-505.[15] Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin F B, Babu S. Starfish:A self-tuning system for big data analytics. In Proc. Biennial Conf. Innovative Data Systems Research, January 2011, pp.261-272.[16] Lei C, Zhuang Z F, Rundensteiner E A, Eltabakh M. Shared execution of recurring workloads in MapReduce. In Proc. VLDB Endowment, September 2015, pp.714-725.[17] Aggarwal C C, Zhai C X. A survey of text clustering algorithms. In Mining Text Data, Aggarwal C C, Zhai C X (eds.), Springer, 2012, pp.77-128.[18] Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya A Y, Foufou S, Bouras A. A survey of clustering algorithms for big data:Taxonomy and empirical analysis. IEEE Trans. Emerging Topics in Computing, 2014, 2(3):267-279.[19] Vu T T, Willis A, Song D W. Modelling time-aware search tasks for search personalisation. In Proc. the 24th Int. Conf. World Wide Web, May 2015, pp.131-132.[20] Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 2004, 55(3):311-331.[21] Zhang T, Ramakrishnan R, Livny M. BIRCH:An efficient data clustering method for very large databases. ACM SIGMOD Record, 1996, 25(2):103-114.[22] Guha S, Rastogi R, Shim K. CURE:An efficient clustering algorithm for large databases. Information Systems, 2001, 26(1):35-58.[23] Karypis G, Han E H, Kumar V. Chameleon:Hierarchical clustering using dynamic modeling. Computer, 1999, 32(8):68-75.[24] Guha S, Rastogi R, Shim K. ROCK:A robust clustering algorithm for categorical attributes. In Proc. the 15th Int. Conf. Data Engineering, March 1999, pp.512-521.[25] Schütz H, Silverstein C. Projections for efficient document clustering. ACM SIGIR Forum, 1997, 31(SI):74-81.[26] Cutting D R, Karger D R, Pedersen J O, Tukey J W. Scatter/Gather:A cluster-based approach to browsing large document collections. In Proc. the 15th Annual Int. ACM SIGIR Conf. Research and Development in Information Retrieval, June 1992, pp.318-329.[27] Sarle W S. Finding groups in data:An introduction to cluster analysis. Journal of the American Statistical Association, 1991, 86(415):830-833.[28] Ng R J, Han J W. Efficient and effective clustering methods for spatial data mining. In Proc. the 20th Int. Conf. Very Large Data Bases, September 1994, pp.144-155.[29] Ng R T, Han J W. CLARANS:A method for clustering objects for spatial data mining. IEEE Trans. Knowledge and Data Engineering, 2002, 14(5):1003-1016.[30] Wei C P, Lee Y H, Hsu C M. Empirical comparison of fast clustering algorithms for large data sets. In Proc. the 33rd Annual Hawaii Int. Conf. System Sciences, January 2000. |