|
Journal of Computer Science and Technology ›› 2019, Vol. 34 ›› Issue (1): 170-184.doi: 10.1007/s11390-019-1905-0
Special Issue: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining
• Data Management and Data Mining • Previous Articles Next Articles
Yu-Liang Ma1, Member, CCF, Ye Yuan1, Member, CCF, ACM, IEEE, Fei-Da Zhu2, Member, ACM, IEEE Guo-Ren Wang3, Member, CCF, ACM, IEEE, Jing Xiao4, and Jian-Zong Wang4, Member, CCF
[1] Allen J. Event Planning:The Ultimate Guide to Successful Meetings, Corporate Events, Fundraising Galas, Conferences, Conventions, Incentives and Other Special Events (2nd edition). Wiley, 2008. [2] She J, Tong Y, Chen L, Cao C C. Conflict-aware eventparticipant arrangement and its variant for online setting. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(9):2281-2295. [3] She J, Tong Y, Chen L, Song T. Feedback-aware social event-participant arrangement. In Proc. ACM SIGMOD International Conference on Management of Data, May 2017, pp.851-865. [4] Tong Y, She J, Meng R. Bottleneck-aware arrangement over event-based social networks:The max-min approach. World Wide Web, 2016, 19(6):1151-1177. [5] Sinnen O, Sousa L A. Communication contention in task scheduling. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(6):503-515. [6] Tong Y, Wang L, Zhou Z, Ding B, Chen L, Ye J, Xu K. Flexible online task assignment in real-time spatial data. Proceedings of the VLDB Endowment 2017, 10(11):1334-1345. [7] Tong Y, She J, Ding B, Wang L, Chen L. Online mobile micro-task allocation in spatial crowdsourcing. In Proc. the 32nd International Conference on Data Engineering, May 2016, pp.49-60. [8] She J, Tong Y, Chen L. Utility-aware social eventparticipant planning. In Proc. ACM SIGMOD International Conference on Management of Data, May 2015, pp.1629-1643. [9] Tong Y, Chen L, Zhou Z, Jagadish H V, Shou L, Lv W. SLADE:A smart large-scale task decomposer in crowdsourcing. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(8):1588-1601. [10] Scott J. Social Network Analysis (3rd edition). Sage, 2012. [11] Knoke D, Yang S. Social Network Analysis (2nd edition). Sage Publishers, 2007 [12] Downey R G, Fellows M R. Fixed parameter tractability and completeness Ⅱ:On completeness for W[1]. Theoretical Computer Science, 1995, 141(1/2):109-131. [13] Tan P N, Steinbach M, Kumar V. Introduction to Data Mining (1st edition). Pearson India, 2006. [14] Guha S, Rastogi R, Shim K. ROCK:A robust clustering algorithm for categorical attributes. Information Systems, 2001, 25(5):345-366. [15] Spitzer F. Principles of Random Walk (2nd edition). Springer, 2001 [16] Seidman S B. Network structure and minimum degree. Social Networks, 1983, 5(3):269-287. [17] Khaouid W, Barsky M, Srinivasan V, Thomo A. K-core decomposition of large networks on a single PC. Proceedings of the VLDB Endowment, 2015, 9(1):13-23. [18] West D B. Introduction to Graph Theory (2nd edition). Pearson, 2000. [19] Chakrabarti D, Zhan Y, Faloutsos C. RMAT:A recursive model for graph mining. In Proc. the 4th SIAM International Conference on Data Mining, April 2004, pp.442-446. [20] Yuan Y, Lian X, Chen L, Yu J X, Wang G, Sun Y. Keyword search over distributed graphs with compressed signature. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(6):1212-1225. [21] Hanneman R A, Riddle M. Introduction to Social Network Methods. University of California, 2005. [22] Luce R D, Perry A D. A method of matrix analysis of group structure. Psychometrika, 1949, 14(2):95-116. [23] Bron C. Algorithm 457:Finding all cliques of an undirected graph. Communications of the ACM, 1973, 16(9):575-576. [24] Cheng J, Ke Y, Fu A W C, Yu J X, Zhu L. Finding maximal cliques in massive networks by h*-graph. In Proc. ACM SIGMOD International Conference on Management of Data, June 2010, pp.447-458. [25] Luce R D. Connectivity and generalized cliques in sociometric group structure. Psychometrika, 1950, 15(2):169-190. [26] Seidman S B, Foster B L. A graph-theoretic generalization of the clique concept*. Journal of Mathematical Sociology, 1978, 6(1):139-154. [27] Dorogovtsev S, Goltsev A V, Mendes J F. K-core organization of complex networks. Physical Review Letters, 2006, 96(4):040601. [28] Alvarez-Hamelin J I, Dall'Asta L, Barrat A, Vespignani A. k-core decomposition:A tool for the visualization of large scale networks. arXiv:0504107, 2005. https://arxiv.org/abs/cs/0504107, May, 2018. [29] Zhang H, Zhao H, Cai W, Liu J, Zhou W. Using the k-core decomposition to analyze the static structure of large-scale software systems. The Journal of Supercomputing, 2010, 53(2):352-369. [30] Saríyüce A E, Gedik B, Jacques-Silva G, Wu K L, Catalyürek Ü V. Streaming algorithms for k-core decomposition. Proceedings of the VLDB Endowment, 2013, 6(6):433-444. [31] Cheng J, Ke Y, Chu S, Özsu M T. Efficient core decompo-sition in massive networks. In Proc. the 27th International Conference on Data Engineering, April 2011, pp.51-62. [32] Wen D, Qin L, Zhang Y, Lin X. I/O efficient core graph decomposition at web scale. In Proc. the 32nd International Conference on Data Engineering, May 2016, pp.133-144. [33] Zhang F, Zhang Y, Qin L, Zhang W, Lin X. When engagement meets similarity:Efficient (k, r)-core computation on social networks. Proceedings of the VLDB Endowment, 2017, 10(10):998-1009. [34] Cohen J. Graph twiddling in a MapReduce world. Computing in Science & Engineering, 2009, 11(4):29-41. [35] Wang J, Cheng J. Truss decomposition in massive networks. Proceedings of the VLDB Endowment, 2012, 5(9):812-823. [36] Huang X, Cheng H, Qin L, Tian W, Yu J X. Querying k-truss community in large and dynamic graphs. In Proc. ACM SIGMOD International Conference on Management of Data, June 2014, pp.1311-1322. [37] Chen P L, Chou C K, Chen M S. Distributed algorithms for k-truss decomposition. In Proc. the 2014 IEEE International Conference on Big Data, October 2015, pp.471-480. [38] Deng K, Sadiq S, Zhou X, Xu H, Fung G P C, Lu Y. On group nearest group query processing. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(2):295-308. [39] Li Y, Chen R, Xu J, Huang Q, Hu H, Choi B. Geo-social k-cover group queries for collaborative spatial computing. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(10):2729-2742. [40] Yang D N, Chen Y L, Lee W C, Chen M S. On socialtemporal group query with acquaintance constraint. Proceedings of the VLDB Endowment, 2011, 4(6):397-408. [41] Yang D N, Shen C Y, Lee W C, Chen M S. On sociospatial group query for location-based social networks. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 2012, pp.949-957. |
[1] | Ming Chen, Wen-Zhong Li, Lin Qian, Sang-Lu Lu, Dao-Xu Chen. Next POI Recommendation Based on Location Interest Mining with Recurrent Neural Networks [J]. Journal of Computer Science and Technology, 2020, 35(3): 603-616. |
[2] | Jing-Ya Zhou, Jian-Xi Fan, Cheng-Kuan Lin, Bao-Lei Cheng. A Cost-Efficient Approach to Storing Users' Data for Online Social Networks [J]. Journal of Computer Science and Technology, 2019, 34(1): 234-252. |
[3] | Tie-Yun Qian, Bei Liu, Liang Hong, Zhen-Ni You. Time and Location Aware Points of Interest Recommendation in Location-Based Social Networks [J]. Journal of Computer Science and Technology, 2018, 33(6): 1219-1230. |
[4] | Peng-Peng Zhao, Hai-Feng Zhu, Yanchi Liu, Zi-Ting Zhou, Zhi-Xu Li, Jia-Jie Xu, Lei Zhao, Victor S. Sheng. A Generative Model Approach for Geo-Social Group Recommendation [J]. , 2018, 33(4): 727-738. |
[5] | Mehdi Azaouzi, Lotfi Ben Romdhane. An Efficient Two-Phase Model for Computing Influential Nodes in Social Networks Using Social Actions [J]. , 2018, 33(2): 286-304. |
[6] | Rong Wang, Tian-Lei Hu, Gang Chen. Where Do Local Experts Go? Evaluating User Geo-Topical Similarity for Top-N Place Recommendation [J]. , 2018, 33(1): 190-206. |
[7] | Bo-Lei Zhang, Zhu-Zhong Qian, Wen-Zhong Li, Bin Tang, Sang-Lu Lu, Xiaoming Fu. Budget Allocation for Maximizing Viral Advertising in Social Networks [J]. , 2016, 31(4): 759-775. |
[8] | Jing Jiang, Zi-Fei Shan, Xiao Wang, Li Zhang, Ya-Fei Dai. Understanding Sybil Groups in the Wild [J]. , 2015, 30(6): 1344-1357. |
[9] | Ji-Bing Gong, Li-Li WangSheng-Tao Sun, Si-Wei Peng. iBole: A Hybrid Multi-Layer Architecture for Doctor Recommendation in Medical Social Networks [J]. , 2015, 30(5): 1073-1081. |
[10] | Huai-Yu Wan, Zhi-Wei Wang You-Fang Lin, Xu-Guang Jia, Yuan-Wei Zhou. Discovering Family Groups in Passenger Social Networks [J]. , 2015, 30(5): 1141-1153. |
[11] | Hong Tang, Shuai Mu, Jin Huang, Jia Zhu, Jian Chen, Rui Ding. Zip: An Algorithm Based on Loser Tree for Common Contacts Searching in Large Graphs [J]. , 2015, 30(4): 799-809. |
[12] | Hui Li, Jiang-Tao Cui, Jian-Feng Ma. Social Influence Study in Online Networks: A Three-Level Review [J]. , 2015, 30(1): 184-199. |
[13] | Mingxuan Yuan, Lei Chen, Philip S. YU, Hong Mei. Protect You More Than Blank: Anti-learning Sensitive User Information in the Social Networks [J]. , 2014, 29(5): 762-776. |
[14] | Ying-Jun Wu(吴英骏), Han Huang(黄翰), Member, CCF, ACM, IEEE, Zhi-Feng Hao(郝志峰), and Feng Chen(陈丰). Local Community Detection Using Link Similarity [J]. , 2012, 27(6): 1261-1268. |
[15] | Rafael Messias Martins, Gabriel Faria Andery, Henry Heberle, Fernando Vieira Paulovich, Alneu de Andrade Lopes, Helio Pedrini, Member, IEEE, and Rosane Minghim, Member, IEEE. Multidimensional Projections for Visual Analysis of Social Networks [J]. , 2012, 27(4): 791-810. |
|
|