|
Journal of Computer Science and Technology ›› 2019, Vol. 34 ›› Issue (2): 272-286.doi: 10.1007/s11390-019-1910-3
Special Issue: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining; Computer Networks and Distributed Computing; Theory and Algorithms
• Special Section of Advances in Computer Science and Technology—Current Advances in the NSFC Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao 2014-2017 (Part 2) • Previous Articles Next Articles
Lei Cui1,2,△, Student Member, IEEE, Youyang Qu2,△, Student Member, IEEE, Mohammad Reza Nosouhi3, Student Member, IEEE, Shui Yu3, Senior Member, IEEE, Jian-Wei Niu4, Senior Member, IEEE, Gang Xie1,5,*
[1] Garcia D. Leaking privacy and shadow profiles in online social networks. Science Advances, 2017, 3(8): Article No. e1701172. [2] He Z, Cai Z, Yu J. Latent-data privacy preserving with customized data utility for social network data. IEEE Transactions on Vehicular Technology, 2018, 67(1): 665-673. [3] Cristofaro E D, Soriente C, Tsudik G, Williams A. Hummingbird: Privacy at the time of twitter. In Proc. the 2012 IEEE Symposium on Security and Privacy, May 2012, pp.285-299. [4] Abawajy J H, Ninggal M I H, Herawan T. Privacy preserving social network data publication. IEEE Communications Surveys and Tutorials, 2016, 18(3): 1974-1997. [5] Yu S, Zhou W, Guo S, Guo M. A feasible IP traceback framework through dynamic deterministic packet marking. IEEE Transactions on Computers, 2016, 65(5): 1418-1427. [6] Qu Y, Yu S, Gao L, Zhou W, Peng S. A hybrid privacy protection scheme in cyber-physical social networks. IEEE Transactions on Computational Social Systems, 2018, 5(3): 773-784. [7] Qu Y, Yu S, Zhou W, Peng S, Wang G, Xiao K. Privacy of things: Emerging challenges and opportunities in wireless Internet of Things. IEEE Wireless Communications, 2018, 25(6): 91-97. [8] Yu S, Liu M, Dou W, Liu X, Zhou S. Networking for big data: A survey. IEEE Communications Surveys and Tutorials, 2017, 19(1): 531-549. [9] Zhu T, Xiong P, Li G, Zhou W. Correlated differential privacy: Hiding information in non-ⅡD data set. IEEE Transactions on Information Forensics and Security, 2015, 10(2): 229-242. [10] Koufogiannis F, Pappas G J. Diffusing private data over networks. IEEE Transactions on Control of Network Systems, 2016, 5(3): 1027-1037. [11] Wang W, Zhang Q. Privacy preservation for context sensing on smartphone. IEEE/ACM Transactions on Networking, 2016, 24(6): 3235-3247. [12] Yu S. Big privacy: Challenges and opportunities of privacy study in the age of big data. IEEE Access, 2016, 4: 2751- 2763. [13] Mohassel P, Zhang Y. SecureML: A system for scalable privacy-preserving machine learning. In Proc. the 2017 IEEE Symposium on Security and Privacy, May 2017, pp.19-38. [14] Costantino G, Martinelli F, Santi P. Investigating the privacy versus forwarding accuracy tradeoff in opportunisticinterest-casting. IEEE Transactions on Mobile Computing, 2014, 13(4): 824-837. [15] Pierangela S, Latanya S. Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. https://dataprivacylab.org/dataprivacy/projects/kanonymity/paper3.pdf,May2018. [16] Machanavajjhala A, Kifer D, Gehrke J, VenkitasubraManiam M. L-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): Article No. 3. [17] Gong X, Chen X, Xing K, Shin D, Zhang M, Zhang J. Personalized location privacy in mobile networks: A social group utility approach. In Proc. the 2005 IEEE Conference on Computer Communications, April 2015, pp.1008-1016. [18] Dwork C. Differential privacy. In Proc. the 33rd International Colloquium on Automata, Languages and Programming, July 2006, pp.1-12. [19] Zhu T, Li G, Zhou W, Yu P S. Differentially private data publishing and analysis: A survey. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8): 1619-1638. [20] Wang Q, Zhang Y, Lu X, Wang Z, Qin Z, Ren K. Realtime and spatio-temporal crowd-sourced social network data publishing with differential privacy. IEEE Transactions on Dependable and Secure Computing, 2016, 15(4): 591-606. [21] Zhang K, Liang X, Lu R, Shen X. PIF: A personalized finegrained spam filtering scheme with privacy preservation in mobile social networks. IEEE Transactions on Computational Social Systems, 2015, 2(3): 41-52. [22] Yu S, Guo S, Stojmenovic I. Fool me if you can: Mimicking attacks and anti-attacks in cyberspace. IEEE Transactions on Computers, 2015, 64(1): 139-151. [23] Qu Y, Cui L, Yu S, Zhou W, Wu J. Improving data utility through game theory in personalized differential privacy. In Proc. the 2018 IEEE International Conference on Communications, May 2018, Article No. 656. [24] Wu D, Yang B, Wang R. Scalable privacy-preserving big data aggregation mechanism. Digital Communications and Networks, 2016, 2(3): 122-129. [25] Wang Q, Hu S, Ren K, Wang J, Wang Z, Du M. Catch me in the dark: Effective privacy-preserving outsourcing of feature extractions over image data. In Proc. the 35th Annual IEEE International Conference on Computer Communications, April 2016, Article No. 131. [26] Ma J, Liu J, Huang X, Xiang Y, Wu W. Authenticated data redaction with fine-grained control. IEEE Transactions on Emerging Topics in Computing. doi:10.1109/TETC.2017.2754646. [27] Qu Y, Yu S, Gao L, Niu J. Big data set privacy preserving through sensitive attribute-based grouping. In Proc. the 2017 IEEE International Conference on Communications, May 2017, Article No. 792. [28] Dwork C, McSherry F, Nissim K, Smith A D. Calibrating noise to sensitivity in private data analysis. In Proc. the 3rd Theory of Cryptography Conference, March 2006, pp.265- 284. [29] Du X, Guizani M, Xiao Y, Chen H. Secure and efficient time synchronization in heterogeneous sensor networks. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2387- 2394. [30] Aghasian E, Garg S, Gao L, Yu S, Montgomery J. Scoring users’ privacy disclosure across multiple online social networks. IEEE Access, 2017, 5: 13118-13130. [31] Wasserman L, Zhou S. A statistical framework for differential privacy. Journal of the American Statistical Association, 2010, 105(489): 375-389. [32] Jorgensen Z, Yu T, Cormode G. Conservative or liberal? Personalized differential privacy. In Proc. the 31st IEEE International Conference on Data Engineering, April 2015, pp.1023-1034. [33] Wang S, Huang L, Tian M, Yang W, Xu H, Guo H. Personalized privacy-preserving data aggregation for histogram estimation. In Proc. the 2015 IEEE Global Communications Conference, December 2015, Article No. 423. [34] He Z, Cai Z, Yu J. Latent-data privacy preserving with customized data utility for social network data. IEEE Transactions on Vehicular Technology, 2018, 67(1): 665-673. [35] Nie Y, Yang W, Huang L, Xie X, Zhao Z, Wang S. A utilityoptimized framework for personalized private histogram estimation. IEEE Transactions on Knowledge and Data Engineering. doi:10.1109/TKDE.2018.2841360. [36] McAuley J, Leskovec J. Social circles: Google+. https://snap.stanford.edu/data/egonets-Gplus.html,Nov.2018. |
[1] | Qing-Bin Liu, Shi-Zhu He, Kang Liu, Sheng-Ping Liu, Jun Zhao. A Unified Shared-Private Network with Denoising for Dialogue State Tracking [J]. Journal of Computer Science and Technology, 2021, 36(6): 1407-1419. |
[2] | Tong Chen, Ji-Qiang Liu, He Li, Shuo-Ru Wang, Wen-Jia Niu, En-Dong Tong, Liang Chang, Qi Alfred Chen, Gang Li. Robustness Assessment of Asynchronous Advantage Actor-Critic Based on Dynamic Skewness and Sparseness Computation: A Parallel Computing View [J]. Journal of Computer Science and Technology, 2021, 36(5): 1002-1021. |
[3] | Jia-Ke Ge, Yan-Feng Chai, Yun-Peng Chai. WATuning: A Workload-Aware Tuning System with Attention-Based Deep Reinforcement Learning [J]. Journal of Computer Science and Technology, 2021, 36(4): 741-761. |
[4] | Yan Zheng, Jian-Ye Hao, Zong-Zhang Zhang, Zhao-Peng Meng, Xiao-Tian Hao. Efficient Multiagent Policy Optimization Based on Weighted Estimators in Stochastic Cooperative Environments [J]. Journal of Computer Science and Technology, 2020, 35(2): 268-280. |
[5] | Jiang Rong, Tao Qin, Bo An. Competitive Cloud Pricing for Long-Term Revenue Maximization [J]. Journal of Computer Science and Technology, 2019, 34(3): 645-656. |
[6] | Ai-Wen Jiang, Bo Liu, Ming-Wen Wang. Deep Multimodal Reinforcement Network with Contextually Guided Recurrent Attention for Image Question Answering [J]. , 2017, 32(4): 738-748. |
[7] | Zhen-Hua Li, Gang Liu, Zhi-Yuan Ji, Roger Zimmermann. Towards Cost-Effective Cloud Downloading with Tencent Big Data [J]. , 2015, 30(6): 1163-1174. |
[8] | Yi Wu (吴奕). Pricing Loss Leaders Can be Hard [J]. , 2012, 27(4): 718-726. |
[9] | Mahsa Chitsaz, and Chaw Seng Woo, Member, IEEE. Software Agent with Reinforcement Learning Approach for Medical Image Segmentation [J]. , 2011, 26(2): 247-255. |
[10] | Mahshid Rahnamay-Naeini, and Masoud Sabaei. A Combinational Perspective in Stimulating Cooperation in Mobile Ad Hoc Networks [J]. , 2011, 26(2): 256-268. |
[11] | wang Xuejun; Shi Chunyi;. A Multiagent Dynamic interaction Testbed:Theoretic Framework, System Architecture and Experimentation [J]. , 1997, 12(2): 121-132. |
|
|