|
Journal of Computer Science and Technology ›› 2019, Vol. 34 ›› Issue (2): 305-317.doi: 10.1007/s11390-019-1912-1
Special Issue: Artificial Intelligence and Pattern Recognition
• Special Section of Advances in Computer Science and Technology—Current Advances in the NSFC Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao 2014-2017 (Part 2) • Previous Articles Next Articles
Dong-Di Zhao1, Fan Li1,*, Member, CCF, ACM, IEEE, Kashif Sharif1, Member, CCF, ACM, IEEE, Guang-Min Xia1, Yu Wang2,*, Fellow, IEEE, Senior Member, ACM
[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In Proc. the 26th Annual Conf. Neural Information Processing Systems, December 2012, pp.1106-1114. [2] Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proc. the 29th Annual Conf. Neural Information Processing Systems, December 2015, pp.91-99. [3] Abdel-Hamid O, Mohamed A R, Jiang H, Deng L, Penn G, Yu D. Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio, Speech, and Language processing, 2014, 22(10): 1533-1545. [4] Mao H, Alizadeh M, Menache I, Kandula S. Resource management with deep reinforcement learning. In Proc. the 15th ACM Workshop on Hot Topics in Networks, November 2016, pp.50-56. [5] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet: A large-scale hierarchical image database. In Proc. the 2009 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, June 2009, pp.248-255. [6] He K, Shang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2016, pp.770-778. [7] Yao S, Hu S, Zhao Y, Zhang A, Abdelzaher T. DeepSense: A unified deep learning framework for time-series mobile sensing data processing. In Proc. the 26th International Conference on World Wide Web, April 2017, pp.351-360. [8] Guo B, Wang Z, Yu Z, Wang Y, Yen N, Huang R, Zhou X. Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm. ACM Computing Surveys, 2015, 48(1): Article No. 7. [9] Vanhoucke V, Senior A, Mao M Z. Improving the speed of neural networks on CPUs. In Proc. NIPS Deep Learning and Unsupervised Feature Learning Workshop, December 2011, pp.611-620. [10] Han S, Mao H, Dally W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. In Proc. Int. Conf. Learning Representations, May 2016, pp.351-360. [11] Gysel P, Motamedi M, Ghiasi S. Hardware-oriented approximation of convolutional neural networks. arXiv:1604.03168, 2016. https://arxiv.org/abs/1604.03168,October2018. [12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556,April2018. [13] Chen W, Wilson J T, Tyree S, Weinberger K Q, Chen Y. Compressing neural networks with the hashing trick. In Proc. the 32nd Int. Conf. Machine Learning, July 2015, pp.2285-2294. [14] Wu J, Leng C, Wang Y, Hu Q, Cheng J. Quantized convolutional neural networks for mobile devices. In Proc. the 2016 IEEE Conf. Computer Vision and Pattern Recognition, June 2016, pp.4820-4828. [15] Zhou A, Yao A, Guo Y, Xu L, Chen Y. Incremental network quantization: Towards lossless CNNs with low precision weights. arXiv:1702.03044, 2017. https://arxiv.org/abs/1702.03044,August2017. [16] Park E, Ahn J, Yoo S. Weighted-entropy-based quantization for deep neural networks. In Proc. the 2017 IEEE Conf. Computer Vision and Pattern Recognition, July 2017, pp.7197-7205. [17] Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional neural networks with low rank expansions. In Proc. British Machine Vision Conference, September 2014, Article No. 73. [18] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv:1503.02531, 2015. https://arxiv.org/pdf/1503.02531.pdf,November2018. [19] Iandola F N, Han S, Moskewicz M W, Ashraf A, Dally W J, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv:1602.07360, 2016. https://arxiv.org/abs/1602.07360,November2018. [20] Chollet F. Xception: Deep learning with depthwise separable convolutions. In Proc. the 2017 IEEE Conf. Computer Vision and Pattern Recognition, July 2017, pp.1800-1807. [21] Lin D, Talathi S, Annapureddy S. Fixed point quantization of deep convolutional networks. In Proc. the 33rd Int. Conf. Machine Learning, Jun. 2016, pp.2849-2858. [22] Gupta S, Argawal A, Gopalakrishnan K, Narayanan P. Deep learning with limited numerical precision. In Proc. the 32nd Int. Conf. Machine Learning, July 2015, pp.1737- 1746. [23] Gong Y, Liu L, Yang M., Bourdev L. Compressing deep convolutional networks using vector quantization. arXiv:1412.6115, 2014. https://arxiv.org/abs/1412.6115,December2018. [24] Kullback S, Leibler R A. On information and sufficiency. The Annals of Mathematical Statistics, 1951, 22(1): 79-86. [25] Abadi M, Barham P, Chen J, Chen Z et al. TensorFlow: A system for large-scale machine learning. In Proc. the 12th USENIX Symposium on Operating Systems Design and Implementation, November 2016, pp.265-283. |
[1] | Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. |
[2] | Shao-Jie Qiao, Guo-Ping Yang, Nan Han, Hao Chen, Fa-Liang Huang, Kun Yue, Yu-Gen Yi, Chang-An Yuan. Cardinality Estimator: Processing SQL with a Vertical Scanning Convolutional Neural Network [J]. Journal of Computer Science and Technology, 2021, 36(4): 762-777. |
[3] | Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, Shengping Zhang. Is It Easy to Recognize Baby's Age and Gender? [J]. Journal of Computer Science and Technology, 2021, 36(3): 508-519. |
[4] | Zhang-Jin Huang, Xiang-Xiang He, Fang-Jun Wang, Qing Shen. A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(2): 434-444. |
[5] | Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results [J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. |
[6] | Rui-Song Zhang, Wei-Ze Quan, Lu-Bin Fan, Li-Ming Hu, Dong-Ming Yan. Distinguishing Computer-Generated Images from Natural Images Using Channel and Pixel Correlation [J]. Journal of Computer Science and Technology, 2020, 35(3): 592-602. |
[7] | Shu-Quan Wang, Lei Wang, Yu Deng, Zhi-Jie Yang, Sha-Sha Guo, Zi-Yang Kang, Yu-Feng Guo, Wei-Xia Xu. SIES: A Novel Implementation of Spiking Convolutional Neural Network Inference Engine on Field-Programmable Gate Array [J]. Journal of Computer Science and Technology, 2020, 35(2): 475-489. |
[8] | Xing-Gang Wang, Jia-Si Wang, Peng Tang, Wen-Yu Liu. Weakly- and Semi-Supervised Fast Region-Based CNN for Object Detection [J]. Journal of Computer Science and Technology, 2019, 34(6): 1269-1278. |
[9] | Robail Yasrab. SRNET: A Shallow Skip Connection Based Convolutional Neural Network Design for Resolving Singularities [J]. Journal of Computer Science and Technology, 2019, 34(4): 924-938. |
[10] | Ri-Sheng Liu, Cai-Sheng Mao, Zhi-Hui Wang, Hao-Jie Li. Blind Image Deblurring via Adaptive Optimization with Flexible Sparse Structure Control [J]. Journal of Computer Science and Technology, 2019, 34(3): 609-621. |
[11] | Tie-Ke He, Hao Lian, Ze-Min Qin, Zhen-Yu Chen, Bin Luo. PTM: A Topic Model for the Inferring of the Penalty [J]. , 2018, 33(4): 756-767. |
[12] | Bei-Ji Zou, Yun-Di Guo, Qi He, Ping-Bo Ouyang, Ke Liu, Zai-Liang Chen. 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising [J]. , 2018, 33(4): 838-848. |
[13] | Nai-Ming Yao, Hui Chen, Qing-Pei Guo, Hong-An Wang. Non-Frontal Facial Expression Recognition Using a Depth-Patch Based Deep Neural Network [J]. , 2017, 32(6): 1172-1185. |
[14] | Xiang Bai, Zheng Zhang, Hong-Yang Wang, Wei Shen. Directional Edge Boxes: Exploiting Inner Normal Direction Cues for Effective Object Proposal Generation [J]. , 2017, 32(4): 701-713. |
[15] | Xu-Ran Zhao, Xun Wang, Qi-Chao Chen. Temporally Consistent Depth Map Prediction Using Deep CNN and Spatial-temporal Conditional Random Field [J]. , 2017, 32(3): 443-456. |
|
|