
Journal of Computer Science and Technology ›› 2019, Vol. 34 ›› Issue (6): 12411257.doi: 10.1007/s1139001919731
Special Issue: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining
• Artificial Intelligence and Pattern Recognition • Previous Articles Next Articles
Momodou L. Sanyang^{1,2}, Ata Kabán^{1}, Member, IEEE
[1] Larrañaga P, Lozano J A. Estimation of Distribution Algorithms:A New Tool for Evolutionary Computation (2002 edition). Kluwer Academic Publishers, 2002. [2] Yuan B, Gallagher M. On the importance of diversity maintenance in estimation of distribution algorithms. In Proc. the 2005 Genetic and Evolutionary Computation Conference, June 2005, pp.719729. [3] Friedman J H. An overview of predictive learning and function approximation. In From Statistics to Neural Networks:Theory and Pattern Recognition Applications, Cherkassky V, Friedman J H, Wechsler H (eds.), SpringerVerlag Berlin Heidelberg, 1994, pp.161. [4] Kabán A, Bootkrajang J, Durrant R J. Toward largescale continuous EDA:A random matrix theory perspective. Evolutionary Computation, 2016, 24(2):255291. [5] Dong W, Yao X. Covariance matrix repairing in Gaussian based EDAs. In Proc. the 2007 IEEE Congress on Evolutionary Computation, September 2007, pp.415422. [6] Paul T K, Iba H. Linear and combinatorial optimizations by estimation of distribution algorithms. In Proc. the 9th MPS Symposium on Evolutionary Computation, Jan. 2002, pp.99106. [7] Ros R, Hansen N. A simple modification in CMAES achieving linear time and space complexity. In Proc. the 10th International Conference on Parallel Problem Solving from Nature, September 2008, pp.296305. [8] Bosman P. On empirical memory design, faster selection of Bayesian factorizations and parameterfree Gaussian EDAs. In Proc. the 2009 Genetic and Evolutionary Computation Conference, July 2009, pp.389396. [9] de Bonet J S, Isbell C L, Viola P. MIMIC:Finding optima by estimating probability densities. In Proc. the 1997 International Conference on Neural Information Processing Systems, December 1996, pp.424430. [10] Bosman P A N, Thierens D. An algorithmic framework for density estimation based evolutionary algorithms. Technical Report, Utrecht University, 1999. https://homepages.cwi.nl/~bosman/publications/1999analgorithmicframework.pdf, June 2019. [11] Armañanzas R, Inza I, Santana R et al. A review of estimation of distribution algorithms in bioinformatics. BioData Mining, 2008, 1:Article No. 6. [12] Weicker K, Weicker N. On the improvement of coevolutionary optimizers by learning variable interdependencies. In Proc. the 1999 Congress on Evolutionary Computation, July 1999, pp.16271632. [13] Dong W, Chen T, Tiňo P, Yao X. Scaling up estimation of distribution algorithm for continuous optimisation. IEEE Transaction of Evolutionary Computation, 2013, 17(6):797822. [14] Yang Z, Tang K, Yao X. Multilevel cooperative convolution for large scale optimization. In Proc. IEEE World Congress on Computational Intelligence, June 2008, pp.16631670. [15] Molina D, Lozano M, Sánchez A M, Herrera F. Memetic algorithms based on local search chains for large scale continuous optimisation problems:MASSWChains. Soft Computing, 2011, 15(11):22012220. [16] Shin S Y, Cho D Y, Zhang B T. Function optimization with latent variable models. In Proc. the 3rd International Symposium on Adaptive Systems, March 2001, pp.145152. [17] Sanyang M L, Kabán A. REMEDA:Random embedding EDA for optimising functions with intrinsic dimension. In Proc. the 14th International Conference on Parallel Problem Solving from Nature, September 2016, pp.859868. [18] Sanyang M L, Kabán A. Heavy tails with parameter adaptation in random projection based continuous EDA. In Proc. the 2015 IEEE Congress on Evolutionary Computation, May 2015, pp.20742081. [19] Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Transaction on Evolutionary Computation, 1999, 3(2):82102. [20] Gao B, Wood I. TAMEDA:Multivariate t distribution, archive and mutation based estimation of distribution algorithm. ANZIAM Journal, 2014, 54:720746. [21] Gao B. Estimation of distribution algorithms for singleand multiobjective optimization[Ph.D. Thesis]. School of Mathematics and Physics, The University of Queensland, 2014. [22] Sanyang M L, Durrant R J, Kabán A. How effective is CauchyEDA in high dimensions? In Proc. the 2016 IEEE Congress on Evolutionary Computation, July 2016, pp.34093416. [23] Dang D C, Lehre P K, Nguyen P T H. Levelbased analysis of the univariate marginal distribution algorithm. Algorithmica, 2018, 81(2):668702. [24] Kabán A. On compressive ensemble induced regularisation:How close is the finite ensemble precision matrix to the infinite ensemble? In Proc. the 2017 International Conference on Algorithmic Learning Theory, October 2017, pp.617628. [25] Kabán A. New bounds for compressive linear least squares regression. In Proc. the 17th International Conference on Artificial Intelligence and Statistics, April 2014, pp.448456. [26] Achlioptas D. Databasefriendly random projections:JohnsonLindenstrauss with binary coins. Journal of Computer and System Sciences, 2003, 66(4):671687. [27] Grahl J, Bosman P A, Rothlauf F. The correlationtriggered adaptive variance scaling IDEA. In Proc. the 2006 Genetic and Evolutionary Computation Conference, July 2006, pp.397404. [28] Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Transaction on Evolutionary Computation, 1999, 3(2):124141. [29] Wong Y Y, Lee K H, Leung K S, Ho C W. A novel approach in parameter adaptation and diversity maintenance for genetic algorithms. Soft Computing, 2003, 7(8):506515. [30] Beyer H G, Schwefel H P. Evolution strategiesA comprehensive introduction. Natural Computing, 1999, 1(1):352. [31] Tang K, Li X D, Suganthan P N, Yang Z, Weise T. Benchmark functions for the CEC'2010 special session and competition on large scale global optimization. Technical report, Nature Inspired Computation and Applications Laboratory, 2012. http://www.tflsgo.org/assets/cec2018/cec2013lsgobenchmarktechreport.pdf, June 2019. [32] Abramowitz M, Stegun I A, Morse P M (eds.). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. National Bureau of Standards, 1964. 
[1]  Einollah Pira. Using Markov Chain Based Estimation of Distribution Algorithm for ModelBased Safety Analysis of Graph Transformation [J]. Journal of Computer Science and Technology, 2021, 36(4): 839855. 
[2]  Concha Bielza, Juan A. Fernández del Pozo, and Pedro Larrañaga. Parameter Control of Genetic Algorithms by Learning and Simulation of Bayesian Networks —— A Case Study for the Optimal Ordering of Tables [J]. , 2013, 28(4): 720731. 
[3]  Nan Ding, ShuDe Zhou, and ZengQi Sun. HistogramBased Estimation of Distribution Algorithm: A Competent Method for Continuous Optimization [J]. , 2008, 23(1): 3543 . 

