|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (2): 487-504.doi: 10.1007/s11390-020-0183-1
Special Issue: Artificial Intelligence and Pattern Recognition; Computer Graphics and Multimedia
• Regular Paper • Previous Articles
Yusuf Fatihu Hamza1 and Hong-Wei Lin1,2,* (蔺宏伟), Member, CCF
[1] Loop C. Smooth subdivision surfaces based on triangles ['s Thesis]. Department of Mathematics, University of Utah, 1987. [2] Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 1978, 10(6): 350-355. DOI: 10.1016/0010-4485(78)90110-0. [3] Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 1978, 10(6): 356-360. DOI: 10.1016/0010-4485(78)90111-2. [4] Dyn D, Levine J, Gregory J A. A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics, 1990, 9(2): 160-169. DOI: 10.1145/78956.78958. [5] Zorin D, Schröder P, Sweldens W. Interpolating subdivision for meshes with arbitrary topology. In Proc. the 23rd Annual Conference on Computer Graphics and Interactive Techniques, August 1996, pp.189-192. DOI: 10.1145/237170.237254. [6] Kobbelt L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Computer Graphics Forum, 1996, 15(3): 409-420. DOI: 10.1111/1467-8659.1530409. [7] Hoppe H, DeRose T, Duchamp T, Halstead M, Jin H, McDonald J, Schweitzer J, Stuetzle W. Piecewise smooth surface reconstruction. In Proc. the 21st Annual Conference on Computer Graphics and Interactive Techniques, July 1994, pp.295-302. DOI: 10.1145/192161.192233. [8] Nasri A H. Polyhedral subdivision methods for free-form surfaces. ACM Transactions on Graphics, 1987, 6(1): 29-73. DOI: 10.1145/27625.27628. [9] Brunet P. Including shape handles in recursive subdivision surfaces. Computer Aided Geometric Design, 1988, 5(1): 41-50. DOI: 10.1016/0167-8396(88)90019-2. [10] Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces. In Proc. the 20th Annual Conference on Computer Graphics and Interactive Techniques, August 1993, pp.35-44. DOI: 10.1145/166117.166121. [11] Zheng J, Cai Y. Interpolation over arbitrary topology meshes using a two-phase subdivision scheme. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(3): 301-310. DOI: 10.1109/TVCG.2006.49. [12] Litke N, Levin A, Schröder P. Fitting subdivision surfaces. In Proc. the 12th IEEE Visualization Conference, October 2001, pp.319-324. DOI: 10.1109/VISUAL.2001.964527. [13] Zheng J, Cai Y. Making Doo-Sabin surface interpolation always work over irregular meshes. The Visual Computer, 2005, 21(4): 242-251. DOI: 10.1007/s00371-005-0285-3. [14] Deng C, Yang X. A simple method for interpolating meshes of arbitrary topology by Catmull-Clark surfaces. The Visual Computer, 2010, 26(2): 137-146. DOI: 10.1007/s00371-009-0393-6. [15] Deng C, Wang G. Interpolating triangular meshes by Loop subdivision scheme. Science China Information Sciences, 2010, 53(9): 1765-1773. DOI: 10.1007/s11432-010-4049-y. [16] Deng C. Interpolating closed triangular meshes by approximation \sqrt{3} subdivision scheme. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(2): 312-317. (in Chinese) [17] Chen Z, Luo X, Tan L, Ye B, Chen J. Progressive interpolation based on Catmull-Clark subdivision surfaces. Computer Graphics Forum, 2008, 27(7): 1823-1827. DOI: 10.1111/j.1467-8659.2008.01328.x. [18] Wang Z, Li Y, Ma W, Deng C. Gauss-Seidel progressive iterative approximation (GS-PIA) for Loop surface interpolation. In Proc. the 26th Pacific Conference on Computer Graphics and Applications, October 2018, pp.73-76. DOI: 10.2312/pg.20181284. [19] Cheng F H, Fan F T, Lai S H, Huang C L, Wang J X, Yong J H. Loop subdivision surface based progressive interpolation. Journal of Computer Science and Technology, 2009, 24(1): 39-46. DOI: 10.1007/s11390-009-9199-2. [20] Deng C, Ma W. Weighted progressive interpolation of Loop subdivision surfaces. Computer-Aided Design, 2012, 44(5): 424-431. DOI: 10.1016/j.cad.2011.12.001. |
[1] | Yun-Cen Huang, Jie-Qing Feng, Matthias NieBner, Yuan-Min Cui, Baoguang Yang . Feature-Adaptive Rendering of Loop Subdivision Surfaces on Modern GPUs [J]. , 2014, 29(6): 1014-1025. |
[2] | Fu-Hua (Frank) Cheng, Feng-Tao Fan, Shu-Hua Lai, Cong-Lin Huang, Jia-Xi Wang, and Jun-Hai Yong. Loop Subdivision Surface Based Progressive Interpolation [J]. , 2009, 24(1 ): 39-46 . |
|