|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (2): 277-294.doi: 10.1007/s11390-020-0192-0
Special Issue: Artificial Intelligence and Pattern Recognition; Computer Graphics and Multimedia
• Artificial Intelligence and Pattern Recognition • Next Articles
Xiao-Zheng Xie1 (解晓政), Jian-Wei Niu1,2 (牛建伟), Senior Member, IEEE, Xue-Feng Liu1,* (刘雪峰), Qing-Feng Li2 (李青锋), Yong Wang3 (王勇), Jie Han3 (韩洁), and Shaojie Tang4 (唐少杰), Member, IEEE
[1] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2015. https://arxiv.org/abs/1409.1556, Nov. 2021. [2] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.770-778. DOI: 10.1109/CVPR.2016.90. [3] Shin S Y, Lee S, Yun I D, Lee K M. Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images. IEEE Trans. Med. Imaging, 2019, 38(3): 762-774. DOI: 10.1109/TMI.2018.2872031. [4] Xu X, Lu Q, Yang L, Hu S X, Chen D Z, Hu Y, Shi Y. Quantization of fully convolutional networks for accurate biomedical image segmentation. In Proc. the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.8300-8308. DOI: 10.1109/CVPR.2018.00866. [5] Zhou Z, Shin J Y, Zhang L, Gurudu S R, Gotway M B, Liang J. Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incrementally. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.4761-4772. DOI: 10.1109/CVPR.2017.506. [6] Esteva A, Kuprel B, Novoa R A, Ko J M, Swetter S M, Blau H M, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118. DOI: 10.1038/nature21056. [7] Huynh B, Drukker K, Giger M. MO-DE-207B-06: Computer-aided diagnosis of breast ultrasound images using transfer learning from deep convolutional neural networks. Med. Phys., 2016, 43(6): 3705-3705. DOI: 10.1118/1.4957255. [8] Yap M H, Pons G, Marti J, Ganau S, Sentis M, Zwiggelaar R, Davison A K, Marti R. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform., 2018, 22(4): 1218-1226. DOI: 10.1109/JBHI.2017.2731873. [9] Tajbakhsh N, Shin J Y, Gurudu S R, Hurst R T, Kendall C B, Gotway M B, Liang J. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging, 2016, 35(5): 1299-1312. DOI: 10.1109/TMI.2016.2535302. [10] Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y. Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification. arXiv:1801.09927, 2018. https://arxiv.org/abs/1801.09927, Nov. 2021. [11] González-Díaz I. DermaKNet: Incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis. IEEE J. Biomed. Health Inform., 2018, 23(2): 547-559. DOI: 10.1109/JBHI.2018.2806962. [12] Li L, Xu M, Wang X, Jiang L, Liu H. Attention based glaucoma detection: A large-scale database and CNN model. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, June 2019, pp.10571-10580. DOI: 10.1109/CVPR.2019.01082. [13] Fang L, Wang C, Li S, Rabbani H, Chen X, Liu Z. Attention to lesion: Lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans. Med. Imaging, 2019, 38(8): 1959-1970. DOI: 10.1109/TMI.2019.2898414. [14] Mitsuhara M, Fukui H, Sakashita Y, Ogata T, Hirakawa T, Yamashita T, Fujiyoshi H. Embedding human knowledge in deep neural network via attention map. arXiv:1905.03540, 2019. https://arxiv.org/abs/1905.03540, May 2021. [15] Dorsi C, Bassett L, Feisg S, Lee C I, Lehman C D, Bassett L W. Breast Imaging Reporting and Data System (BI-RADS). Oxford University Press, 2018. [16] Bian C, Lee R, Chou Y, Cheng J. Boundary regularized convolutional neural network for layer parsing of breast anatomy in automated whole breast ultrasound. In Proc. the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, Sept. 2017, pp.259-266. DOI: 10.1007/978-3-319-66179-7\textunderscore 30. [17] Maicas G, Bradley A P, Nascimento J C, Reid I, Carneiro G. Training medical image analysis systems like radiologists. In Proc. the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, September 2018, pp.546-554. DOI: 10.1007/978-3-030-00928-1\textunderscore 62. [18] Liu J, Li W, Zhao N, Cao K, Yin Y, Song Q, Chen H, Gong X. Integrate domain knowledge in training CNN for ultrasonography breast cancer diagnosis. In Proc. the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, September 2018, pp.868-875. DOI: 10.1007/978-3-030-00934-2\textunderscore 96. [19] Wang X, Peng Y, Lu Y, Lu Z, Summers R M. TieNet: Text-image embedding network for common thorax disease classification and reporting in chest X-rays. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.9049-9058. DOI: 10.1109/CVPR.2018.00943. [20] Berg W A, Cosgrove D O, Doré C J et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology, 2012, 262(2): 435-449. DOI: 10.1148/radiol.11110640. [21] Dobruch-Sobczak K, Piotrzkowska-Wróblewska H, Roszkowska-Purska K, Nowicki A, Jakubowsi W. Usefulness of combined BI-RADS analysis and Nakagami statistics of ultrasound echoes in the diagnosis of breast lesions. Clin. Radiol., 2017, 72(4): 339-339. DOI: 10.1016/j.crad.2016.11.009. [22] Liu Y, Cheng M M, Hu X, Wang K, Bai X. Richer convolutional features for edge detection. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.5872-5881. DOI: 10.1109/CVPR.2017.622. [23] Arbeláez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33(5): 898-916. DOI: 10.1109/TPAMI.2010.161. [24] Lin M, Chen Q, Yan S. Network in network. arXiv:1312.4400, 2013. https://arxiv.org/abs/1312.4400, March 2021. [25] Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.2921-2929. DOI: 10.1109/CVPR.2016.319. [26] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39(4): 640-651. DOI: 10.1109/TPAMI.2016.2572683. [27] He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In Proc. the IEEE International Conference on Computer Vision, October 2017, pp.2980-2988. DOI: 10.1109/ICCV.2017.322. [28] Han S, Kang H K, Jeong J Y et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys. Med. Biol., 2017, 62(19): 7714-7728. DOI: 10.1088/1361-6560/aa82ec. [29] Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. |
[1] | Yue-Huan Wang, Ze-Nan Li, Jing-Wei Xu, Ping Yu, Taolue Chen, Xiao-Xing Ma. Predicted Robustness as QoS for Deep Neural Network Models [J]. Journal of Computer Science and Technology, 2020, 35(5): 999-1015. |
[2] | Yun-Yun Wang, Jian-Min Gu, Chao Wang, Song-Can Chen, Hui Xue. Discrimination-Aware Domain Adversarial Neural Network [J]. Journal of Computer Science and Technology, 2020, 35(2): 259-267. |
[3] | Robail Yasrab. SRNET: A Shallow Skip Connection Based Convolutional Neural Network Design for Resolving Singularities [J]. Journal of Computer Science and Technology, 2019, 34(4): 924-938. |
[4] | Jun Yin, Wayne Xin Zhao, Xiao-Ming Li. Type-Aware Question Answering over Knowledge Base with Attention-Based Tree-Structured Neural Networks [J]. , 2017, 32(4): 805-813. |
[5] | Ting Bai, Hong-Jian Dou, Wayne Xin Zhao, Ding-Yi Yang, Ji-Rong Wen. An Experimental Study of Text Representation Methods for Cross-Site Purchase Preference Prediction Using the Social Text Data [J]. , 2017, 32(4): 828-842. |
[6] | LU Ruqian (陆汝钤) and JIN Zhi (金芝). Formal Ontology: Foundation of Domain Knowledge Sharing and Reusing [J]. , 2002, 17(5): 0-0. |
|