|
Journal of Computer Science and Technology ›› 2020, Vol. 35 ›› Issue (3): 592-602.doi: 10.1007/s11390-020-0216-9
Special Issue: Artificial Intelligence and Pattern Recognition; Computer Graphics and Multimedia
• Artificial Intelligence and Pattern Recognition • Previous Articles Next Articles
Rui-Song Zhang1,2, Wei-Ze Quan1,2, Lu-Bin Fan3, Li-Ming Hu4, Dong-Ming Yan1,2,4,*, Senior Member, CCF, Member, ACM, IEEE
[1] He P, Jiang X, Sun T, Li H. Computer graphics identification combining convolutional and recurrent neural networks. IEEE Signal Processing Letters, 2018, 25(9):1369-1373. [2] Ng T T, Chang S F, Hsu J, Xie L, Tsui M P. Physicsmotivated features for distinguishing photographic images and computer graphics. In Proc. the 13th ACM International Conference on Multimedia, November 2005, pp.239-248. [3] Lyu S, Farid H. How realistic is photorealistic?IEEE Transactions on Signal Processing, 2005, 53(2):845-850. [4] Chen W, Shi Y Q, Xuan G. Identifying computer graphics using HSV color model and statistical moments of characteristic functions. In Proc. the 2007 IEEE International Conference on Multimedia&Expo, July 2007, pp.1123-1126. [5] Gallagher A C, Chen T. Image authentication by detecting traces of demosaicing. In Proc. the 2008 IEEE Conference on Computer Vision and Pattern Recognition, June 2008. [6] Sankar G, Zhao H V, Yang Y H. Feature based classification of computer graphics and real images. In Proc. the IEEE International Conference on Acoustics, Speech and Signal Processing, April 2009, pp.1513-1516. [7] Peng F, Zhou D l, Long M, Sun X M. Discrimination of natural images and computer generated graphics based on multi-fractal and regression analysis. AEU-International Journal of Electronics and Communications, 2017, 71:72-81. [8] Rahmouni N, Nozick V, Yamagishi J, Echizen I. Distinguishing computer graphics from natural images using convolution neural networks. In Proc. the 2017 IEEE International Workshop on Information Forensics and Security, December 2017. [9] Yu I, Kim D, Park J, Hou J, Choi S, Lee H. Identifying photorealistic computer graphics using convolutional neural networks. In Proc. the IEEE International Conference on Image Processing, September 2017, pp.4093-4097. [10] Quan W, Wang K, Yan D M, Zhang X. Distinguishing between natural and computer-generated images using convolutional neural networks. IEEE Transactions on Information Forensics and Security, 2018, 13(11):2772-2787. [11] Yao Y, Hu W, Zhang W, Wu T, Shi Y Q. Distinguishing computer-generated graphics from natural images based on sensor pattern noise and deep learning. Sensors, 2018, 18(4):Article No. 1296. [12] Nguyen H H, Yamagishi J, Echizen I. Capsule-forensics:Using capsule networks to detect forged images and videos. In Proc. the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2019, pp.2307-2311. [13] Popescu A C, Farid H. Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on Signal Processing, 2005, 53(2):758-767. [14] Ianeva T I, de Vries A P, Röhrig H. Detecting cartoons:A case study in automatic video-genre classification. In Proc. the 2003 IEEE International Conference on Multimedia&Expo, July 2003, pp.449-452. [15] Pan F, Chen J, Huang J. Discriminating between photorealistic computer graphics and natural images using fractal geometry. Science in China Series F:Information Sciences, 2009, 52(2):329-337. [16] Zhang R, Wang R D, Ng T T. Distinguishing photographic images and photorealistic computer graphics using visual vocabulary on local image edges. In Proc. the 10th International Workshop on Digital Forensics and Watermarking, October 2012, pp.292-305. [17] Li Z, Ye J, Shi Y Q. Distinguishing computer graphics from photographic images using local binary patterns. In Proc. the 11th International Workshop on Digital Forensics and Watermarking, October 2012, pp.228-241. [18] Ojala T, Pietikäinen M, Maenpaa T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [19] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444. [20] Zhang X J, Lu Y F, Zhang S H. Multi-task learning for food identification and analysis with deep convolutional neural networks. Journal of Computer Science and Technology, 2016, 31(3):489-500. [21] Cheng M M, Hou Q B, Zhang S H, Rosin P L. Intelligent visual media processing:When graphics meets vision. Journal of Computer Science and Technology, 2017, 32(1):110-121. [22] Quan W, Yan D M, Guo J, Meng W, Zhang X. Maximal Poisson-disk sampling via sampling radius optimization. In Proc. the SIGGRAPH ASIA, December 2016, Article No. 22. [23] Barnes C, Zhang F L. A survey of the state-of-the-art in patch-based synthesis. Computational Visual Media, 2017, 3(1):3-20. [24] Hinton G E, Krizhevsky A, Wang S D. Transforming autoencoders. In Proc. the 21st International Conference on Artificial Neural Networks, June 2011, pp.44-51. [25] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules. In Proc. the 2017 Annual Conference on Neural Information Processing Systems, December 2017, pp.3856-3866. [26] Tarianga B D, Senguptab P, Roy A, Chakraborty R S, Naskar R. Classification of computer generated and natural images based on efficient deep convolutional recurrent attention model. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 2019, pp.146-152. [27] Yan Y, Ren W, Cao X. Recolored image detection via a deep discriminative model. IEEE Transactions on Information Forensics and Security, 2019, 14(1):5-17. [28] Bottou L. Large-scale machine learning with stochastic gradient descent. In Proc. the 19th International Conference on Computational Statistics, August 2010, pp.177-186. [29] Dang-Nguyen D T, Pasquini C, Conotter V, Boato G. RAISE:A raw images dataset for digital image forensics. In Proc. the 6th ACM Multimedia Systems Conference, March 2015, pp.219-224. [30] Ng T T, Chang S F, Hsu J, Pepeljugoski M. Columbia photographic images and photorealistic computer graphics dataset. Technical Report, Department of Electrical Engineering, Columbia University, 2004. http://www.ee.columbia.edu/ln/dvmm/publications/05/ng cgdataset 05.pdf, Jan. 2019. [31] Gunturk B K, Altunbasak Y, Mersereau R M. Color plane interpolation using alternating projections. IEEE Transactions on Image Processing, 2002, 11(9):997-1013. |
[1] | Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. |
[2] | Shao-Jie Qiao, Guo-Ping Yang, Nan Han, Hao Chen, Fa-Liang Huang, Kun Yue, Yu-Gen Yi, Chang-An Yuan. Cardinality Estimator: Processing SQL with a Vertical Scanning Convolutional Neural Network [J]. Journal of Computer Science and Technology, 2021, 36(4): 762-777. |
[3] | Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, Shengping Zhang. Is It Easy to Recognize Baby's Age and Gender? [J]. Journal of Computer Science and Technology, 2021, 36(3): 508-519. |
[4] | Zhang-Jin Huang, Xiang-Xiang He, Fang-Jun Wang, Qing Shen. A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(2): 434-444. |
[5] | Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results [J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. |
[6] | Shu-Quan Wang, Lei Wang, Yu Deng, Zhi-Jie Yang, Sha-Sha Guo, Zi-Yang Kang, Yu-Feng Guo, Wei-Xia Xu. SIES: A Novel Implementation of Spiking Convolutional Neural Network Inference Engine on Field-Programmable Gate Array [J]. Journal of Computer Science and Technology, 2020, 35(2): 475-489. |
[7] | Xing-Gang Wang, Jia-Si Wang, Peng Tang, Wen-Yu Liu. Weakly- and Semi-Supervised Fast Region-Based CNN for Object Detection [J]. Journal of Computer Science and Technology, 2019, 34(6): 1269-1278. |
[8] | Robail Yasrab. SRNET: A Shallow Skip Connection Based Convolutional Neural Network Design for Resolving Singularities [J]. Journal of Computer Science and Technology, 2019, 34(4): 924-938. |
[9] | Ri-Sheng Liu, Cai-Sheng Mao, Zhi-Hui Wang, Hao-Jie Li. Blind Image Deblurring via Adaptive Optimization with Flexible Sparse Structure Control [J]. Journal of Computer Science and Technology, 2019, 34(3): 609-621. |
[10] | Dong-Di Zhao, Fan Li, Kashif Sharif, Guang-Min Xia, Yu Wang. Space Efficient Quantization for Deep Convolutional Neural Networks [J]. Journal of Computer Science and Technology, 2019, 34(2): 305-317. |
[11] | Tie-Ke He, Hao Lian, Ze-Min Qin, Zhen-Yu Chen, Bin Luo. PTM: A Topic Model for the Inferring of the Penalty [J]. , 2018, 33(4): 756-767. |
[12] | Bei-Ji Zou, Yun-Di Guo, Qi He, Ping-Bo Ouyang, Ke Liu, Zai-Liang Chen. 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising [J]. , 2018, 33(4): 838-848. |
[13] | Nai-Ming Yao, Hui Chen, Qing-Pei Guo, Hong-An Wang. Non-Frontal Facial Expression Recognition Using a Depth-Patch Based Deep Neural Network [J]. , 2017, 32(6): 1172-1185. |
[14] | Xiang Bai, Zheng Zhang, Hong-Yang Wang, Wei Shen. Directional Edge Boxes: Exploiting Inner Normal Direction Cues for Effective Object Proposal Generation [J]. , 2017, 32(4): 701-713. |
[15] | Xu-Ran Zhao, Xun Wang, Qi-Chao Chen. Temporally Consistent Depth Map Prediction Using Deep CNN and Spatial-temporal Conditional Random Field [J]. , 2017, 32(3): 443-456. |
|
|