|
Journal of Computer Science and Technology ›› 2020, Vol. 35 ›› Issue (6): 1428-1445.doi: 10.1007/s11390-020-0323-7
Special Issue: Software Systems
Previous Articles Next Articles
Mohammad Y. Mhawish and Manjari Gupta
[1] Wiegers K, Beatty J. Software Reqirements. Pearson Education, 2013. [2] Chung L, do Prado Leite J C S. On non-functional requirements in software engineering. In Conceptual Modeling:Foundations and Applications-Essays in Honor of John Mylopoulos, Borgida AT, Chaudhri V, Giorgini P, Yu E (eds.), Springer, 2009, pp.363-379. [3] Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactoring:Improving the Design of Existing Code (1st edition). Addison-Wesley Professional, 1999. [4] Yamashita A, Moonen L. Exploring the impact of intersmell relations on software maintainability:An empirical study. In Proc. the 35th Int. Conf. Softw. Eng., May 2013, pp.682-691. [5] Yamashita A, Counsell S. Code smells as system-level indicators of maintainability:An empirical study. J. Syst. Softw., 2013, 86(10):2639-2653. [6] Yamashita A, Moonen L. Do code smells reflect important maintainability aspects? In Proc. the 28th IEEE Int. Conf. Softw. Maintenance, September 2012, pp.306-315. [7] Sjøberg D I K, Yamashita A, Anda B C D, Mockus A, Dybå T. Quantifying the effect of code smells on maintenance effort. IEEE Trans. Softw. Eng., 2013, 39(8):1144-1156. [8] Sahin D, Kessentini M, Bechikh S, Ded K. Code-smells detection as a bi-level problem. ACM Trans. Softw. Eng. Methodol., 2014, 24(1):Article No. 6. [9] Olbrich S, Cruzes D S, Basili V, Zazworka N. The evolution and impact of code smells:A case study of two open source systems. In Proc. the 3rd International Symposium on Empirical Software Engineering and Measurement, October 2009, pp.390-400. [10] Olbrich S M, Cruzes D S, Sjoøberg D I K. Are all code smells harmful? A study of God Classes and Brain Classes in the evolution of three open source systems. In Proc. the 26th IEEE Int. Conf. Softw. Maintenance, September 2010. [11] Khomh F, Penta D M, Guéhéneuc Y G. An exploratory study of the impact of code smells on software changeproneness. In Proc. the 16th Working Conference on Reverse Engineering, October 2009, pp.75-84. [12] Deligiannis I, Stamelos I, Angelis L, Roumeliotis M, Shepperd M. A controlled experiment investigation of an objectoriented design heuristic for maintainability. J. Syst. Softw., 2004, 72(2):129-143. [13] Pérez-Castillo R, Piattini M. Analyzing the harmful effect of god class refactoring on power consumption. IEEE Softw., 2014, 31(3):48-54. [14] Li W, Shatnawi R. An empirical study of the bad smells and class error probability in the post-release object-oriented system evolution. J. Syst. Softw., 2007, 80(7):1120-1128. [15] Ciupke O. Automatic detection of design problems in object-oriented reengineering. In Proc. the 30th International Conference on Technology of Object-Oriented Languages and Systems, Delivering Quality Software, August 1999, pp.18-32. [16] Travassos G, Shull F, Fredericks M, Basili V R. Detecting defects in object-oriented designs:Using reading techniques to increase software quality. ACM SIGPLAN Notices, 1999, 34(10):47-56. [17] Dashofy E M, van der Hoek A, Taylor R N. A comprehensive approach for the development of modular software architecture description languages. ACM Trans. Softw. Eng. Methodol., 2005, 14(2):199-245. [18] Vidal S, Vázquez H, Díaz-Pace J A, Marcos C, Garcia A, Oizumi W. JSpIRIT:A flexible tool for the analysis of code smells. In Proc. the 34th Int. Conf. Chil. Comput. Sci. Soc., November 2016. [19] Marinescu R. Measurement and quality in object-oriented design. In Proc. the 21st IEEE Int. Conf. Softw. Maintenance, September 2005, pp.701-704. [20] Moha N, Guéhéneuc Y, Duchien L, le Meur A. DECOR:A method for the specification and detection of code and design smells. IEEE Trans. Softw. Eng., 2010, 36(1):20-36. [21] Fontana F A, Zanoni M, Marino A, Mäntylä M V. Code smell detection:Towards a machine learning-based approach. In Proc. the 2013 IEEE Int. Conf. Softw. Maintenance, September 2013, pp.396-399. [22] Azadi U, Fontana F A, Zanoni M. Machine learning based code smell detection through WekaNose. In Proc. the 40th Int. Conf. Softw. Eng., May 2018, pp.288-289. [23] Fontana F A, Zanoni M. Code smell severity classification using machine learning techniques. Knowledge-Based Syst., 2017, 128:43-58. [24] Fontana F A, Mäntylä M V, Zanoni M, Marino A. Comparing and experimenting machine learning techniques for code smell detection. Empir. Softw. Eng., 2016, 21(3):1143-1191. [25] Sharma T, Spinellis D. A survey on software smells. J. Syst. Softw., 2018, 138:158-173. [26] Rasool G, Arshad Z. A review of code smell mining techniques. J. Softw. Evol. Process, 2015, 27(11):867-895. [27] Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E. A review-based comparative study of bad smell detection tools. In Proc. the 20th International Conference on Evaluation and Assessment in Software Engineering, June 2016, Article No. 18. [28] Fontana F A, Braione P, Zanoni M. Automatic detection of bad smells in code:An experimental assessment. J. Object Technol., 2012, 11(2):Article No. 5. [29] Riberro M T, Singh S, Guestrin C. "Why should I trust you?":Explaining the predictions of and classifier. https//arxiv.org/abs/1602.04938, Oct. 2020. [30] Chicco D. Ten quick tips for machine learning in computational biology. BioData Mining, 2017, 10(1):35. [31] Marinescu R. Detection strategies:Metrics-based rules for detecting design flaws. In Proc. the 20th IEEE International Conference on Software Maintenance, December 2004, pp.350-359. [32] Abílio R, Padilha J, Figueiredo E, Costa H. Detecting code smells in software product lines-An exploratory study. In Proc. the 12th International Conference on Information Technology-New Generations, April 2015, pp.433-438. [33] Fenske W, Schulze S. Code smells revisited:A variability perspective. In Proc. the 9th International Workshop on Variability Modelling of Software-Intensive Systems, January 2015, Article No. 3. [34] Suryanarayana G, Samarthyam G, Sharma T. Refactoring for Software Design Smells:Managing Technical Debt (1st edition). Morgan Kaufmann, 2014. [35] Baudry B, Traon Y L, Sunyé G, Jézéquel J M. Measuring and improving design patterns testability. In Proc. the 9th IEEE International Software Metrics Symposium, September 2003. [36] Langelier G, Sahraoui H, Poulin P. Visualization-based analysis of quality for large-scale software systems. In Proc. the 20th IEEE/ACM International Conference on Automated Software Engineering, November 2005, pp.214-223. [37] Murphy-Hill E, Black A P. An interactive ambient visualization for code smells. In Proc. the 5th International Symposium on Software Visualization, October 2010, pp.5-14. [38] de Figueiredo Carneiro G, Silva M, Mara L et al. Identifying code smells with multiple concern views. In Proc. the 24th Brazilian Symposium on Software Engineering, September 2010, pp.128-137. [39] Kreimer J. Adaptive detection of design flaws. Electron. Notes Theor. Comput. Sci., 2005, 141(4):117-136. [40] Amorim L, Costa E, Antunes N, Fonseca B, Ribeiro M. Experience report:Evaluating the effectiveness of decision trees for detecting code smells. In Proc. the 26th IEEE International Symposium on Software Reliability Engineering, November 2015, pp.261-269. [41] Khomh F, Vaucher S, Guéhéneuc Y G, Sahraoui H. A Bayesian approach for the detection of code and design smells. In Proc. the 9th International Conference on Quality Software, August 2009, pp.305-314. [42] Khomh F, Vaucher S, Guéhéneuc Y G, Sahraoui H. BDTEX:A GQM-based Bayesian approach for the detection of antipatterns. J. Syst. Softw., 2011, 84(4):559-572. [43] Vaucher S, Khomh F, Moha N, Guéhéneuc Y G. Tracking design smells:Lessons from a study of god classes. In Proc. the 16th Working Conference on Reverse Engineering, October 2009, pp.145-154. [44] Hassaine S, Khomh F, Guéhéneuc Y G, Hamel S. IDS:An immune-inspired approach for the detection of software design smells. In Proc. the 7th International Conference on the Quality of Information and Communications Technology, September 2010, pp.343-348. [45] Maiga A, Ali N, Bhattacharya N et al. Support vector machines for anti-pattern detection. In Proc. the 27th IEEE/ACM International Conference on Automated Software Engineering, September 2012, pp.278-281. [46] Maiga A, Ali N, Bhattacharya N, Sabane A, Gueheneuc Y G, Aimeur E. SMURF:A SVM-based incremental antipattern detection approach. In Proc. the 19th Working Conference on Reverse Engineering, October 2012, pp.466-475. [47] Tempero E, Anslow C, Dietrich J et al. The Qualitas Corpus:A curated collection of Java code for empirical studies. In Proc. the 17th Asia Pacific Software Engineering Conference, November 2010, pp.336-345. [48] Pecorelli F, Palomba F, di Nucci D, de Lucia A. Comparing heuristic and machine learning approaches for metric-based code smell detection. In Proc. the 27th Int. Conf. Progr. Compr., May 2019, pp.93-104. [49] Wieman R. Anti-Pattern Scanner:An approach to detect anti-patterns and design violations[Master Thesis]. Department of Computer Science, Delft University of Technology, 2011. [50] Nongpong K. Integrating "code smells" detection with refactoring tool support[Ph.D. Thesis]. University of Wisconsin-Milwaukee, 2012. [51] Riel A J. Object-Oriented Design Heuristics (1st edition). Addison-Wesley Professional, 1996. [52] Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P. SMOTE:Synthetic minority over-sampling technique. J. Artif. Intell. Res., 2002, 16:321-357. [53] Do T D, Hui S C, Fong A C M. Associative classification with prediction confidence. In Proc. the 4th International Conference on Machine Learning and Cybernetics, August 2005, pp.199-208. [54] Malhotra R. Empirical Research in Software Engineering:Concepts, Analysis, and Applications (1st edition). Chapman and Hall/CRC, 2015. [55] Forman G, Scholz M, Rajaram S. Feature shaping for linear SVM classifiers. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 2009, pp.299-308. [56] Jain A, Nandakumar K, Ross A. Score normalization in multimodal biometric systems. Pattern Recognit., 2005, 38(12):2270-2285. [57] Yang J, Honavar V. Feature subset selection using a genetic algorithm. IEEE Intell. Syst., 1998, 13(2):44-49. [58] Cassar I R, Titus N D, Grill W M. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation. J. Neural Eng., 2017, 14(6):Article No. 066013. [59] Hassanat A, Almohammadi K, Alkafaween E, Abunawas E, Hammouri A, Prasath V B. Choosing mutation and crossover ratios for genetic algorithms-A review with a new dynamic approach. Information, 2019, 10(12):Article No. 390. [60] Hall M A. Correlation-based feature subset selection for machine learning[Ph.D Thesis]. Department of Computer Science, The University of Waikato, 1998. [61] Vapnik V N. An overview of statistical learning theory. IEEE Trans. Neural Networks, 1999, 10(5):988-999. [62] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444. [63] Aha D W, Kibler D, Albert M K. Instance-based learning algorithms. Mach. Learn., 1991, 6(1):37-66. [64] Rokach L, Maimon O Z. Data Mining with Decision Trees:Theory and Applications. World Scientific, 2007. [65] Malohlava M, Candel A, Click C, Roark H, Parmar V. Gradient boosting machine with H2O. https://www.h-2o.ai/wp-content/uploads/2018/01/GBM-BOOKLET.pdf, May 2020. [66] Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification. Technical Report, Taiwan University, 2008. https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, May 2020. [67] Thomas I L, Allcock G M. Determining the confidence level for a classification. Photogramm. Eng. Remote Sensing, 1984, 50(10):1491-1496. [68] Chakraborty S, Tomsett R, Raghavendra R et al. Interpretability of deep learning models:A survey of results. In Proc. the 2017 IEEE SmartWorld Ubiquitous Intell. Comput. Adv. and Trust. Comput. Scalable Comput. and Commun. Cloud Big Data Comput., Internet People Smart City Innov. SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, August 2017. [69] Guggulothu T, Moiz S A. Code smell detection using multilabel classification approach. Softw. Qual. J., 2020, 28:1063-1086. [70] Kiyak E O, Birant D, Birant K U. Comparison of multilabel classification algorithms for code smell detection. In Proc. the 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies, October 2019. [71] di Nucci D, Palomba F, Tamburri D A, Serebrenik A, de Lucia A. Detecting code smells using machine learning techniques:Are we there yet? In Proc. the 25th IEEE Int. Conf. Softw. Anal. Evol. Reengineering, March 2018, pp.612-621. |
[1] | Yi-Fan Chen, Xiang Zhao, Jin-Yuan Liu, Bin Ge, Wei-Ming Zhang. Item Cold-Start Recommendation with Personalized Feature Selection [J]. Journal of Computer Science and Technology, 2020, 35(5): 1217-1230. |
[2] | Gökçer Peynirci, Mete Eminaǧaoǧlu, Korhan Karabulut. Feature Selection for Malware Detection on the Android Platform Based on Differences of IDF Values [J]. Journal of Computer Science and Technology, 2020, 35(4): 946-962. |
[3] | Shu-Zheng Zhang, Zhen-Yu Zhao, Chao-Chao Feng, Lei Wang. A Machine Learning Framework with Feature Selection for Floorplan Acceleration in IC Physical Design [J]. Journal of Computer Science and Technology, 2020, 35(2): 468-474. |
[4] | Chao Ni, Wang-Shu Liu, Xiang Chen, Qing Gu, Dao-Xu Chen, Qi-Guo Huang. A Cluster Based Feature Selection Method for Cross-Project Software Defect Prediction [J]. , 2017, 32(6): 1090-1107. |
[5] | Bei-Ji Zou, Yao Chen, Cheng-Zhang Zhu, Zai-Liang Chen, Zi-Qian Zhang. Supervised Vessels Classification Based on Feature Selection [J]. , 2017, 32(6): 1222-1230. |
[6] | Lan Yao, Feng Zeng, Dong-Hui Li, Zhi-Gang Chen. Sparse Support Vector Machine with Lp Penalty for Feature Selection [J]. , 2017, 32(1): 68-77. |
[7] | Chao Han, Yun-Kun Tan, Jin-Hui Zhu, Yong Guo, Jian Chen, Qing-Yao Wu. Online Feature Selection of Class Imbalance via PA Algorithm [J]. , 2016, 31(4): 673-682. |
[8] | Fatemeh Azmandian, Ayse Yilmazer, Jennifer G. Dy Javed A. Aslam, and David R. Kaeli. Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection [J]. , 2014, 29(3): 408-422. |
|
|