|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (2): 309-319.doi: 10.1007/s11390-020-0326-4
Special Issue: Artificial Intelligence and Pattern Recognition
• Artificial Intelligence and Pattern Recognition • Previous Articles Next Articles
Jun-Feng Fan (樊骏锋), Mei-Ling Wang (汪美玲), Chang-Liang Li* (李长亮), Senior Member, CCF, Zi-Qiang Zhu (朱自强), and Lu Mao (毛璐)
[1] Tur G, De Mori R. Spoken Language Understanding: Systems for Extracting Semantic Information from Speech. John Wiley & Sons, 2011. DOI: 10.1002/9781119992691. [2] Haffner P, Tür G, Wright J H. Optimizing SVMs for complex call classification. In Proc. the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, April 2003, pp.632-635. DOI: 10.1109/ICASSP.2003.1198860. [3] Hu J, Wang G, Lochovsky F, Sun J T, Chen Z. Understanding user's query intent with Wikipedia. In Proc. the 18th International Conference on World Wide Web, April 2009, pp.471-480. DOI: 10.1145/1526709.1526773. [4] Sarikaya R, Hinton G E, Ramabhadran B. Deep belief nets for natural language call-routing. In Proc. the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2011, pp.5680-5683. DOI: 10.1109/ICASSP.2011.5947649. [5] Raymond C, Riccardi G. Generative and discriminative algorithms for spoken language understanding. In Proc. the 8th Annual Conference of the International Speech Communication Association, August 2007, pp.1605-1608. [6] Yao K, Peng B, Zhang Y, Yu D, Zweig G, Shi Y. Spoken language understanding using long short-term memory neural networks. In Proc. the 2014 IEEE Spoken Language Technology Workshop, Dec. 2014, pp.189-194. DOI: 10.1109/SLT.2014.7078572. [7] Guo D, Tur G, Yih W T, Zweig G. Joint semantic utterance classification and slot filling with recursive neural networks. In Proc. the 2014 IEEE Spoken Language Technology Workshop, Dec. 2014, pp.554-559. DOI: 10.1109/SLT.2014.7078634. [8] Hakkani-Tür D, Tür G, Celikyilmaz A, Chen Y N, Gao J, Deng L, Wang Y Y. Multi-domain joint semantic frame parsing using bi-directional RNN-LSTM. In Proc. the 17th Annual Conference of the International Speech Communication Association, Sept. 2016, pp.715-719. DOI: 10.21437/Interspeech.2016-402. [9] Chen Y N, Hakanni-Tür D, Tur G, Celikyilmaz A, Guo J, Deng L. Syntax or semantics? Knowledge-guided joint semantic frame parsing. In Proc. the 2016 IEEE Spoken Language Technology Workshop, Dec. 2016, pp.348-355. DOI: 10.1109/SLT.2016.7846288. [10] Wang Y, Shen Y, Jin H. A bi-model based RNN semantic frame parsing model for intent detection and slot filling. In Proc. the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, June 2018, pp.309-314. DOI: 10.18653/v1/N18-2050. [11] Liu B, Lane I. Attention-based recurrent neural network models for joint intent detection and slot filling. In Proc. the 17th Annual Conference of the International Speech Communication Association, Sept. 2016, pp.685-689. DOI: 10.21437/Interspeech.2016-1352. [12] Goo C W, Gao G, Hsu Y K, Huo C L, Chen T C, Hsu K W, Chen Y N. Slot-gated modeling for joint slot filling and intent prediction. In Proc. the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, June 2018, pp.753-757. DOI: 10.18653/v1/N18-2118. [13] Liu B, Lane I. Recurrent neural network structured output prediction for spoken language understanding. In Proc. NIPS Workshop on Machine Learning for Spoken Language Understanding and Interactions, Dec. 2015. [14] Chen Q, Zhuo Z, Wang W. BERT for joint intent classification and slot filling. arXiv:1902.10909, 2019. https://arxiv.org/abs/1902.10909, August 2020. [15] Li C, Li L, Qi J. A self-attentive model with gate mechanism for spoken language understanding. In Proc. the 2018 Conference on Empirical Methods in Natural Language Processing, October 31-November 4, 2018, pp.3824-3833. DOI: 10.18653/v1/D18-1417. [16] Zhang C, Li Y, Du N, Fan W, Philip S Y. Joint slot filling and intent detection via capsule neural networks. In Proc. the 57th Annual Meeting of the Association for Computational Linguistics, July 28-August 2, 2019, pp.5259-5267. DOI: 10.18653/v1/P19-1519. [17] E H H, Niu P, Chen Z, Song M. A novel bi-directional interrelated model for joint intent detection and slot filling. In Proc. the 57th Annual Meeting of the Association for Computational Linguistics, July 28-August 2, 2019, pp.5467-5471. DOI: 10.18653/v1/P19-1544. [18] Schuster M, Paliwal K K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. DOI: 10.1109/78.650093. [19] Tur G, Hakkani-Tür D, Heck L. What is left to be understood in ATIS? In Proc. the 2010 IEEE Spoken Language Technology Workshop, Dec. 2010, pp.19-24. DOI: 10.1109/SLT.2010.5700816. [20] Coucke A, Saade A, Ball A et al. Snips voice platform: An embedded spoken language understanding system for private-by-design voice interfaces. arXiv:1805.10190, 2018. https://arxiv.org/abs/1805.10190, August 2020. |
[1] | YAN Pengju (燕鹏举), ZHENG Fang (郑方), SUN Hui (孙辉) and XU Mingxing (徐明星). Spontaneous Speech Parsing in Travel Information Inquiring and Booking Systems [J]. , 2002, 17(6): 0-0. |
|