Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (1): 221-230.doi: 10.1007/s11390-020-9418-4

Special Issue: Theory and Algorithms

• Regular Paper • Previous Articles    

Universal and General Quantum Simultaneous Secret Distribution with Dense Coding by Using One-Dimensional High-Level Cluster States

Zhi-Hao Liu and Han-Wu Chen        

  1. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education Nanjing 211189, China
  • Received:2019-01-22 Revised:2020-12-04 Online:2021-01-05 Published:2021-01-23
  • About author:Zhi-Hao Liu received his Ph.D. degree in computer software and theory from Southeast University, Nanjing, in 2013. He currently is an associate professor in School of Computer Science and Engineering, Southeast University, Nanjing. His current research interests include quantum cryptography, quantum information and quantum computation.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China under Grant No. 61871120, the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20191259, the Six Talent Peaks Project of Jiangsu Province of China under Grant No. XYDXX-003, and the Fundamental Research Funds for the Central Universities of China under Grant No. 2242020K40046.

A universal and general quantum simultaneous secret distribution (QSSD) protocol is put forward based on the properties of the one-dimensional high-level cluster states, in which one sender dispatches different high-level classical secret messages to many users at the same time. Due to the idea of quantum dense coding, the sender can send different two-dit classical messages (two d-level classical numbers) to different receivers simultaneously by using a one-dimensional d-level cluster state, which means that the information capacity is up to the maximal. To estimate the security of quantum channels, a new eavesdropping check strategy is put forward. Meanwhile, a new attack model, the general individual attack is proposed and analyzed. It is shown that the new eavesdropping check strategy can effectively prevent the traditional attacks including the general individual attack. In addition, multiparty quantum secret report (MQSR, the same as quantum simultaneous secret submission (QSSS)) in which different users submit their different messages to one user simultaneously can be gotten if the QSSD protocol is changed a little.

Key words: quantum simultaneous secret distribution (QSSD); multiparty quantum secret report (MQSR); quantum simultaneous secret submission (QSSS); quantum secret sharing; quantum broadcast communication;

[1] Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1):145-195. DOI:10.1103/RevModPhys.74.145.
[2] Bennett C H, Brassard G. Quantum cryptography:Public key distribution and coin tossing. In Proc. IEEE International Conference on Computers, Systems & Signal Processing, December 1984, pp.175-179.
[3] Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussieres F, Li M J, Nolan D, Martin A, Zbinden H. Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 2018, 121(19):Article No. 190502. DOI:10.1103/PhysRevLett.121.190502.
[4] Cao W F, Zhen Y Z, Zheng Y L, Li L, Chen Z B, Liu N L, Chen K. One-sided measurement-device-independent quantum key distribution. Physical Review A, 2018, 97(1):Article No. 012313. DOI:10.1103/physreva.97.012313.
[5] Dellantonio L, Sorensen A S, Bacco D. High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Physical Review A, 2018, 98(6):Article No. 062301. DOI:10.1103/PhysRevA.98.062301.
[6] Huang A Q, Sun S H, Liu Z H, Makarov V. Quantum key distribution with distinguishable decoy states. Physical Review A, 2018, 98(1):Article No. 012330. DOI:10.1103/PhysRevA.98.012330.
[7] Islam N T, Lim C C W, Cahall C, Kim J, Gauthier D J. Securing quantum key distribution systems using fewer states. Physical Review A, 2018, 97(4):Article No. 042347. DOI:10.1103/PhysRevA.97.042347.
[8] Pivoluska M, Huber M, Malik M. Layered quantum key distribution. Physical Review A, 2018, 97(3):Article No. 032312. DOI:10.1103/PhysRevA.97.032312.
[9] Huang P, Huang J Z, Zhang Z S, Zeng G H. Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Physical Review A, 2018, 97(4):Article No. 042311. DOI:10.1103/PhysRevA.97.042311.
[10] Lai H, Luo M X, Pieprzyk J, Zhang J, Pan L, Orgun M A. High-rate and high-capacity measurementdevice-independent quantum key distribution with Fibonacci matrix coding in free space. Science ChinaInformation Sciences, 2018, 61(6):Article No. 062501. DOI:10.1007/s11432-017-9291-6.
[11] Blakley G R. Safeguarding cryptographic keys. In Proc. the National Computer Conference, June 1979, pp.313-317. DOI:10.1109/AFIPS.1979.98.
[12] Shamir A. How to share a secret. Communications of the ACM, 1979, 22(11):612-613. DOI:10.1145/359168.359176.
[13] Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Physical Review Letters, 1999, 83(3):648-651. DOI:10.1103/PhysRevLett.83.648.
[14] Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Physical Review A, 1999, 59(3):1829-1834. DOI:10.1103/PhysRevA.59.1829.
[15] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Physical Review A, 1999, 59(1):162-168. DOI:10.1103/PhysRevA.59.162.
[16] Wang J, Li L, Peng H, Yang Y. Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Physical Review A, 2017, 95(2):Article No. 022320. DOI:10.1103/PhysRevA.95.022320.
[17] Lu C, Miao F, Meng K, Yu Y. Threshold quantum secret sharing based on single qubit. Quantum Information Processing, 2018, 17(3):Article No. 64. DOI:10.1007/s11128- 017-1793-6.
[18] Qin H, Tso R. High-capacity quantum secret sharing based on orbital angular momentum. Quantum Information & Computation, 2018, 18(7/8):579-591. DOI:10.5555/3370256.3370259.
[19] Song Y, Li Z, Li Y. A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum Information Processing, 2018, 17(9):Article No. 244. DOI:10.1007/s11128-018-1970-2.
[20] Zhou Y, Yu J, Yan Z, Jia X, Zhang J, Xie C, Peng K. Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Physical Review Letters, 2018, 121(15):Article No. 150502. DOI:10.1103/PhysRevLett.121.150502.
[21] Long G L, Deng F G, Wang C, Li X H. Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China, 2007, 2(3):251- 272. DOI:10.1007/s11467-007-0050-3.
[22] Li X H. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16):Article No. 0160307. DOI:10.7498/aps.64.160307. (in Chinese)
[23] Wang J, Zhang Q, Tang C J. Quantum broadcast communication. Chinese Physics B, 2007, 16(7):1868-1877. DOI:1088/1009-1963/16/7/011.
[24] Yang Y G, Wang Y H, Wen Q Y. Quantum broadcast communication with authentication. Chinese Physics B, 2010, 19(7):63-67. DOI:10.1088/1674-1056/19/7/070304.
[25] Liu Z H, Chen H W. Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad. Chinese Physics B, 2016, 25(8):63-68. DOI:CNKI:SUN:ZGWL.0.2016-08-010.
[26] Deng F G, Li X H, Li C Y, Zhou P, Liang Y J, Zhou H Y. Multiparty quantum secret report. Chinese Physics Letters, 2006, 23(7):1676-1679. DOI:10.1088/0256- 307X/23/7/006.
[27] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhou H Y. Multiparty quantum remote secret conference. Chinese Physics Letters, 2007, 24(1):23-26. DOI:10.1088/0256- 307X/24/1/007.
[28] Nguyen B A. Quantum exam. Physics Letters A, 2006, 350(3/4):174-178. DOI:10.1016/j.physleta.2005.09.071.
[29] Gao F, Wen Q Y, Zhu F C. Comment on:\Quantum exam"[phys. Lett. A 350(2006) 174]. Physics Letters A, 2007, 360(6):748-750. DOI:10.1016/j.physleta.2006.08.016.
[30] Song J, Zhang S. Comment on:\Quantum exam"[phys. Lett. A 350(2006) 174]. Physics Letters A, 2007, 360(6):746-747. DOI:10.1016/j.physleta.2006.08.019.
[31] Man Z X, Xia Y J. Efficient one-sender versus N-receiver quantum secure direct communication. Chinese Physics Letters, 2006, 23(8):1973-1975. DOI:10.1088/0256- 307X/23/8/004.
[32] Gao F, Lin S, Wen Q Y, Zhu F C. A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chinese Physics Letters, 2008, 25(5):1561-1563. DOI:10.1088/0256-307X/25/5/011.
[33] Liu Z H, Chen H W, Liu W J, Xu J. Quantum simultaneous secret distribution with dense coding by using cluster states. Quantum Information Processing, 2013, 12(12):3745-3759. DOI:10.1007/s11128-013-0633-6.
[34] Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Physical Review Letters, 2001, 86(5):910-913. DOI:10.17877/DE290R-12220.
[35] Zhou D L, Zeng B, Xu Z, Sun C P. Quantum computation based on d-level cluster state. Physical Review A, 2003, 68(6):Article No. 062303. DOI:10.1103/PhysRevA.68.062303.
[36] Wang X W, Shan Y G, Xia L X, Lu M W. Dense coding and teleportation with one-dimensional cluster states. Physics Letters A, 2007, 364(1):7-11. DOI:10.1016/j.physleta.2006.11.056.
[37] Liu Z H, Chen H W, Liu W J, Xu J, Li Z Q. Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Science China-Information Sciences, 2012, 55(2):360-367. DOI:10.1007/s11432-011-4371-z.
[38] Cai Q Y. The \ping-pong" protocol can be attacked without eavesdropping. Physical Review Letters, 2003, 91(10):Article No. 109801. DOI:10.1103/PhysRevLett.91.109801.
[39] Liu Z H, Chen H W. Cryptanalysis of controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Communications Letters, 2017, 21(10):2202-2205. DOI:10.1109/LCOMM.2017.2721952.
[40] Gisin N, Fasel S, Kraus B, Zbinden H, Ribordy G. Trojanhorse attacks on quantum-key-distribution systems. Physical Review A, 2006, 73(2):022320. DOI:10.1103/PHYSREVA.73.022320.
[41] Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Physics Letters A, 2006, 351(1/2):23-25. DOI:10.1016/j.physleta.2005.10.050.
[42] Deng F G, Zhou P, Li X H, Li C Y, Zhou H Y. Robustness of two-way quantum communication protocols against trojan horse attack. arXiv:0508168, 2005., Aug. 2020.
[43] Li X H, Deng F G, Li C Y, Liang Y J, Zhou P, Zhou H Y. Deterministic secure quantum communication without maximally entangled states. Journal of the Korean Physical Society, 2006, 49(4):1354-1359. DOI:10.1007/s10854-006- 0034-z.
No related articles found!
Full text



[1] Zhou Di;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] Chen Shihua;. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. , 1986, 1(2): 54 -59 .
[3] Li Wanxue;. Almost Optimal Dynamic 2-3 Trees[J]. , 1986, 1(2): 60 -71 .
[4] Wang Xuan; Lü Zhimin; Tang Yuhai; Xiang Yang;. A High Resolution Chinese Character Generator[J]. , 1986, 1(2): 1 -14 .
[5] C.Y.Chung; H.R.Hwa;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[6] Pan Qijing;. A Routing Algorithm with Candidate Shortest Path[J]. , 1986, 1(3): 33 -52 .
[7] Zhang Cui; Zhao Qinping; Xu Jiafu;. Kernel Language KLND[J]. , 1986, 1(3): 65 -79 .
[8] Wang Jianchao; Wei Daozheng;. An Effective Test Generation Algorithm for Combinational Circuits[J]. , 1986, 1(4): 1 -16 .
[9] Chen Zhaoxiong; Gao Qingshi;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[10] Huang Heyan;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .

ISSN 1000-9000(Print)

CN 11-2296/TP

Editorial Board
Author Guidelines
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
  Copyright ©2015 JCST, All Rights Reserved