|
Journal of Computer Science and Technology ›› 2020, Vol. 35 ›› Issue (2): 412-417.doi: 10.1007/s11390-020-9707-y
• Special Section of ChinaSys 2019 • Previous Articles Next Articles
Wen-Yan Chen1, Ke-Jiang Ye1,*, Member, CCF, Cheng-Zhi Lu1, Dong-Dai Zhou2, Member, CCF, Cheng-Zhong Xu3, Fellow, IEEE
[1] Lu C, Ye K, Xu G et al. Imbalance in the cloud:An analysis on Alibaba cluster trace. In Proc. the 2017 IEEE Int. Big Data, December 2017, pp.2884-2892. [2] Panda S K, Jana P K. SLA-based task scheduling algorithms for heterogeneous multi-cloud environment. The Journal of Supercomputing, 2017, 73(6):2730-2762. [3] Hosseinimotlagh S, Khunjush F, Samadzadeh R. Seats:Smart energy-aware task scheduling in real-time cloud computing. The Journal of Supercomputing, 2015, 71(1):45-66. [4] Shen Y, Bao Z, Qin X et al. Adaptive task scheduling strategy in cloud:When energy consumption meets performance guarantee. World Wide Web, 2017, 20(2):155-173. [5] Gao W, Zhan J, Wang L et al. BigDataBench:A scalable and unified big data and AI benchmark suite. arXiv:1802.08254, 2018. https://arxiv.org/abs/1802.08254,November 2019. [6] Ferdman M, Adileh A, Koçberber O et al. Clearing the clouds:A study of emerging scale-out workloads on modern hardware. ACM SIGPLAN Notices, 2012, 47(4):37-48. [7] Jia Z, Zhan J, Wang L et al. Understanding big data analytics workloads on modern processors. IEEE Trans. Parallel and Distributed Systems, 2017, 28(6):1797-1810. [8] Chen W, Ye K, Xu C. Co-locating online workload and offline workload in the cloud:An interference analysis. In Proc. the 21st Int. High Performance Computing and Communications, August 2019, pp.2278-2283. |
No related articles found! |
|
|