|
Journal of Computer Science and Technology ›› 2020, Vol. 35 ›› Issue (2): 338-352.doi: 10.1007/s11390-020-9970-y
• Special Section on Learning and Mining in Dynamic Environments • Previous Articles Next Articles
Qiang Zhou, Jing-Jing Gu*, Member, CCF, Chao Ling, Wen-Bo Li, Yi Zhuang, Jian Wang, Senior Member, CCF, Member, ACM, IEEE
[1] Zheng Y, Capra L, Wolfson O, Yang H. Urban computing:Concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3):Article No. 38. [2] Zhang J B, Zheng Y, Qi D K. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proc. the 31st AAAI Conference on Artificial Intelligence, February 2017, pp.1655-1661. [3] Zheng Z, Yang Y, Liu J et al. Deep and embedded learning approach for traffic flow prediction in urban informatics. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10):3927-3939. [4] Sun J, Zhang J, Li Q et al. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks. arXiv:1903.07789, 2019. https://arxiv.org/abs/1903.07789,August 2019. [5] Du B, Peng H, Wang S et al. Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction. IEEE Transactions on Intelligent Transportation Systems. doi:10.1109/TITS.2019.2900481. [6] Chai D, Wang L, Yang Q. Bike flow prediction with multigraph convolutional networks. In Proc. the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2018, pp.397-400. [7] Geng X, Li Y, Wang L et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In Proc. the 33rd AAAI Conference on Artificial Intelligence, January 2019, pp.3656-3663. [8] Ramaswami A, Russell A G, Culligan P J et al. Metaprinciples for developing smart, sustainable, and healthy cities. Science, 2016, 352(6288):940-943. [9] Ai Y, Li Z, Gan M et al. A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system. Neural Computing and Applications, 2019, 31(5):1665-1677. [10] Shuman D I, Narang S K, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs:Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, 30(3):83-98. [11] Li Y X, Zheng Y, Zhang H C, Chen L. Traffic prediction in a bike-sharing system. In Proc. the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2015, Article No. 33. [12] Yao H, Wu F, Ke J, Tang X, Jia Y, Lu S, Gong P, Ye J, Li Z. Deep multi-view spatial-temporal network for taxi demand prediction. In Proc. the 32nd AAAI Conference on Artificial Intelligence, February 2018, pp.2588-2595. [13] Holmgren J, Aspegren S, Dahlstroma J. Prediction of bicycle counter data using regression. Procedia Computer Science, 2017, 113:502-507. [14] Kumar S V, Vanajakshi L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data. European Transport Research Review, 2015, 7(3):Article No. 21. [15] Abadi A, Rajabioun T, Ioannou P A. Traffic flow prediction for road transportation networks with limited traffic data. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):653-662. [16] Li Y, Yu R, Shahabi C, Liu Y. Diffusion convolutional recurrent neural network:Data-driven traffic forecasting. In Proc. the 6th International Conference on Learning Representations, April 2018. [17] Cheng A Y, Jiang X, Li Y F, Zhang C, Zhu H. Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method. Physica A:Statistical Mechanics and its Applications, 2017, 466:422-434. [18] Achar A, Bharathi D, Kumar B A et al. Bus arrival time prediction:A spatial Kalman filter approach. IEEE Transactions on Intelligent Transportation Systems. doi:10.1109/TITS.2019.2909314. [19] Liu J M, Sun L L, Li Q, Ming J C, Liu Y C, Xiong H. Functional zone based hierarchical demand prediction for bike system expansion. In Proc. the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2017, pp.957-966. [20] Liu J M, Sun L L, Chen W W, Xiong H. Rebalancing bike sharing systems:A multi-source data smart optimization. In Proc. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016, pp.1005-1014. [21] Srivastava N, Mansimov E, Salakhutdinov R. Unsupervised learning of video representations using LSTMs. arXiv:1502.04681, 2015. https://arxiv.org/abs/1502.04681,August 2019. [22] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014. https://arxiv.org/abs/1409.0473,August 2019. [23] Cho K, van Merrienboer B, Gulcehre C et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014. https://arxiv.org/abs/1406.1078,August 2019. [24] Thirumalai C, Koppuravuri R. Bike sharing prediction using deep neural networks. JOIV:International Journal on Informatics Visualization, 2017, 1(3):83-87. [25] Shi X J, Chen Z R, Wang H, Yeung D Y, Wong W K, WOO W C. Convolutional LSTM network:A machine learning approach for precipitation nowcasting. In Proc. the 2015 Annual Conference on Neural Information Processing Systems, December 2015, pp.802-810. [26] Bruna J, Zaremba W, Szlam A et al. Spectral networks and locally connected networks on graphs. arXiv:1312.6203, 2013. https://arxiv.org/abs/1312.6203,August 2019. [27] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proc. the 2016 Annual Conference on Neural Information Processing Systems, December 2016, pp.3844-3852. [28] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2016. https://arxiv.org/abs/1609.02907,August 2019. [29] Zhang X, He L, Chen K, Luo Y, Zhou J, Wang F. Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson's disease. arXiv:1805.08801, 2018. https://arxiv.org/abs/1805.08801,August 2019. [30] Yao H, Tang X, Wei H, Zheng G, Yu Y, Li Z. Modeling spatial-temporal dynamics for traffic prediction. arXiv:1803.01254, 2018. https://arxiv.org/abs/1803.01254,August 2019. [31] Yuan N J, Zheng Y, Xie X et al. Discovering urban functional zones using latent activity trajectories. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3):712-725. [32] Erman J, Arlitt M F, Mahanti A. Traffic classification using clustering algorithms. In Proc. the 2nd Annual ACM Workshop on Mining Network Data, September 2006, pp.281-286. [33] Cho K, van Merrienboer B, Bahdanau D et al. On the properties of neural machine translation:Encoder-decoder approaches. arXiv:1409.1259, 2014. https://arxiv.org/abs/1409.1259,August 2019. [34] Friedman J H. Greedy function approximation:A gradient boosting machine. The Annals of Statistics, 2001, 29(5):1189-1232. [35] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. In Proc. the 2014 Annual Conference on Neural Information Processing Systems, December 2014, pp.3104-3112. |
No related articles found! |
|