Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (6): 1431-1451.doi: 10.1007/s11390-021-0205-7

Special Issue: Computer Networks and Distributed Computing

• Regular Paper • Previous Articles    

CDM: Content Diffusion Model for Information-Centric Networks

Bo Chen, Member, ACM, IEEE, Liang Liu*, Member, CCF, ACM, IEEE, and Hua-Dong Ma, Fellow, CCF, IEEE        

  1. Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China;School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2019-12-05 Revised:2020-11-07 Online:2021-11-30 Published:2021-12-01
  • Contact: Liang Liu
  • Supported by:
    This work is supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China (NSFC) under Grant No. 61921003, the National Natural Science Foundation of China under Grant Nos. 61722201 and 61632008, the Fund for International Cooperation and Exchange of NSFC under Grant No. 61720106007, and the Fundamental Research Funds for the Central Universities of China under Grant No. 2019RC40.

This paper proposes the Content Diffusion Model (CDM) for modeling the content diffusion process in information-centric networking (ICN). CDM is inspired by the epidemic model and it provides a method of theoretical quantitative analysis for the content diffusion process in ICN. Specifically, CDM introduces the key functions to formalize the key factors that influence the content diffusion process, and thus it can construct the model via a simple but efficient way. Further, we derive CDM by using different combinations of those key factors and put them into several typical ICN scenarios, to analyze the characteristics during the diffusion process such as diffusion speed, diffusion scope, average fetching hops, changing and final state, which can greatly help to analyze the network performance and application design. A series of experiments are conducted to evaluate the efficacy and accuracy of CDM. The results show that CDM can accurately illustrate and model the content diffusion process in ICN.

Key words: information-centric networking; content diffusion; modeling;

[1] Ahlgren B, Dannewitz C, Imbrenda C, Kutscher D, Ohlman B. A survey of information-centric networking. IEEE Communications Magazine, 2012, 50(7): 26-36. DOI: 10.1109/MCOM.2012.6231276.
[2] Dan A, Towsley D. An approximate analysis of the LRU and FIFO buffer replacement schemes. ACM SIGMETRICS Performance Evaluation Review, 1990, 19(1): 143-152. DOI: 10.1145/98460.98525.
[3] Rosensweig E J, Menasche D S, Kurose J. On the steady-state of cache networks. In Proc. the 2013 IEEE INFOCOM, April 2013, pp.863-871. DOI: 10.1109/INFCOM.2013.6566874.
[4] Carofiglio G, Gallo M, Muscariello L, Perino D. Modeling data transfer in content-centric networking. In Proc. the 23rd International Teletraffic Congress, Sept. 2011, pp.111-118.
[5] Zhang G Q, Li Y, Lin T. Caching in information centric networking: A survey. Computer Networks, 2013, 57(16): 3128-3141. DOI: 10.1016/j.comnet.2013.07.007.
[6] Psaras I, Clegg R G, Landa R, Chai W K, Pavlou G. Modelling and evaluation of CCN-caching trees. In Proc. the 10th International IFIP TC 6 Networking Conference, May 2011, pp.78-91. DOI: 10.1007/978-3-642-20757-07.
[7] Rodriguez P, Spanner C, Biersack E W. Analysis of web caching architectures: Hierarchical and distributed caching. IEEE/ACM Transactions on Networking, 2001, 9(4): 404-418. DOI: 10.1109/90.944339.
[8] Laoutaris N, Che H, Stavrakakis I. The LCD interconnection of LRU caches and its analysis. Performance Evaluation, 2006, 63(7): 609-634. DOI: 10.1016/j.peva.2005.05.003.
[9] Laoutaris N, Syntila S, Stavrakakis I. Meta algorithms for hierarchical web caches. In Proc. the 2004 IEEE International Conference on Performance, Computing, and Communications, April 2004, pp.445-452. DOI: 10.1109/PCCC.2004.1395054.
[10] Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1927, 115(772): 700-721. DOI: 10.1098/rspa.1927.0118.
[11] Khelil A, Becker C, Tian J, Rothermel K. An epidemic model for information diffusion in MANETs. In Proc. the 5th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, Sept. 2002, pp.54-60. DOI: 10.1145/570758.570768.
[12] Van Jacobson, Mosko M, Smetters D, Garcia-Luna-Aceves J. Content-centric networking. Whitepaper, Palo Alto Research Center, 2007, pp.2-4., Dec. 2019.
[13] Koponen T, Chawla M, Chun B G, Ermolinskiy A, Kim K H, Shenker S, Stoica I. A data-oriented (and beyond) network architecture. In Proc. the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, August 2007, pp.181-192. DOI: 10.1145/1282380.1282402.
[14] Raychaudhuri D, Nagaraja K, Venkataramani A. MobilityFirst: A robust and trustworthy mobility-centric architecture for the future internet. ACM SIGMOBILE Mobile Computing and Communications Review, 2012, 16(3): 2-13. DOI: 10.1145/2412096.2412098.
[15] Liu L, Ma H, Chen B, Yang W. GlobeSen: An open interconnection frame-work based on named sensory date for IoT. In Proc. the ACM Turing 50th Celebration Conference, May 2017, Article No. 43. DOI: 10.1145/3063955.3063999
[16] Zhang L X, Afanasyev A, Burke J et al. Named data networking. ACM SIGCOMM Comput. Commun. Rev., 2014, 44(3): 66-73. DOI: 10.1145/2656877.2656887.
[17] Chen B, Liu L, Wang H, Ma H. On content diffusion modelling in information-centric networks. In Proc. the 2017 IEEE Global Communications Conference, December 2017. DOI: 10.1109/GLOCOM.2017.8254725.
[18] Tsilopoulos C, Xylomenos G. Supporting diverse traffic types in information centric networks. In Proc. the ACM SIGCOMM Workshop on InformationCentric Networking, August 2011, pp.13-18. DOI: 10.1145/2018584.2018588.
[19] Chlebus E, Brazier J. Nonstationary Poisson modeling of web browsing session arrivals. Information Processing Letters, 2007, 102(5): 187-190. DOI: 10.1016/j.ipl.2006.12.015.
[20] Wang B, Sen S, Adler M, Towsley D. Optimal proxy cache allocation for efficient streaming media distribution. IEEE Transactions on Multimedia, 2004, 6(2): 366-374. DOI: 10.1109/TMM.2003.822788.
[21] Stern T E, Elwalid A I. Analysis of separable Markovmodulated rate models for information-handling systems. Advances in Applied Probability, 1991, 23(1): 105-139. DOI: 10.2307/1427514.
[22] Kimiyama H, Itoh S. Method of predicting number of ondemand video requests using time series data for video cache system. In Proc. the 6th International Conference on Advances in Mobile Computing and Multimedia, November 2008, pp.200-205. DOI: 10.1145/1497185.1497227.
[23] Chai W K, He D L, Psaras I, Pavlou G. Cache “less for more” in information-centric networks. In Proc. the 11th International IFIP TC 6 Networking Conference, May 2012, pp.27-40. DOI: 10.1007/978-3-642-30045-53.
[24] Newman M. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 2005, 46(5): 323-351. DOI: 10.1080/00107510500052444.
[25] Wang H Z. The design and implementation of informationcentric Internet of Things simulator [Master Thesis]. School of Computer Science, Beijing University of Posts and Telecommunications, 2018.
[26] Kephart J O, White S R. Directed-graph epidemiological models of computer viruses. In Proc. the 1991 IEEE Computer Society Symposium on Research in Security and Privacy, May 1991, pp.343-359. DOI: 10.1109/RISP.1991.130801.
[27] Kephart J O, White S R. Measuring and modeling computer virus prevalence. In Proc. the 1993 IEEE Computer Society Symposium on Research in Security and Privacy, May 1993, pp.2-15. DOI: 10.1109/RISP.1993.287647.
[28] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys. Rev. E, 2001, 63(6): Article No. 066117. DOI: 10.1103/PhysRevE.63.066117.
[29] Baldoni R, Beraldi R, Piergiovanni S T, Virgillito A. On the modelling of publish/subscribe communication systems. Concurrency and Computation: Practice and Experience, 2005, 17(12): 1471-1495. DOI: 10.1002/cpe.879.
[30] Rosensweig E J, Kurose J, Towsley D. Approximate models for general cache networks. In Proc. the 2010 IEEE INFOCOM, March 2010, pp.1100-1108. DOI: 10.1109/INFCOM.2010.5461936.
[31] Jacobson V, Smetters D K, Briggs N H, Plass M F, Stewart P, Thornton J D, Braynard R L. VoCCN: Voiceover content-centric networks. In Proc. the 2009 Workshop on Re-Architecting the Internet, December 2009. DOI: 10.1145/1658978.1658980.
[1] Xian-He Sun and Xiaoyang Lu. The Memory-Bounded Speedup Model and Its Impacts in Computing [J]. Journal of Computer Science and Technology, 2023, 38(1): 64-79.
[2] Kirk W. Cameron. Adventures Beyond Amdahl's Law: How Power-Performance Measurement and Modeling at Scale Drive Server and Supercomputer Design [J]. Journal of Computer Science and Technology, 2023, 38(1): 80-86.
[3] Zi-Xuan Hu, Peng-Bo Bo, and Cai-Ming Zhang. Quasi-Developable B-Spline Surface Design with Control Rulings [J]. Journal of Computer Science and Technology, 2022, 37(5): 1221-1238.
[4] Songjie Niu, Shimin Chen. TransGPerf: Exploiting Transfer Learning for Modeling Distributed Graph Computation Performance [J]. Journal of Computer Science and Technology, 2021, 36(4): 778-791.
[5] Jason Liu, Pedro Espina, Xian-He Sun. A Study on Modeling and Optimization of Memory Systems [J]. Journal of Computer Science and Technology, 2021, 36(1): 71-89.
[6] Jung-Been Lee, Taek Lee, Hoh Peter In. Topic Modeling Based Warning Prioritization from Change Sets of Software Repository [J]. Journal of Computer Science and Technology, 2020, 35(6): 1461-1479.
[7] De-Shuai Han, Qi-Liang Yang, Jian-Chun Xing, Guang-Lian Ma. EasyModel: A Refinement-Based Modeling and Verification Approach for Self-Adaptive Software [J]. Journal of Computer Science and Technology, 2020, 35(5): 1016-1046.
[8] Monidipa Das, Soumya K. Ghosh. Data-Driven Approaches for Spatio-Temporal Analysis: A Survey of the State-of-the-Arts [J]. Journal of Computer Science and Technology, 2020, 35(3): 665-696.
[9] Mo-Han Zhang, Jin-Hui Yu, Kang Zhang, Jun-Song Zhang. Artistic Augmentation of Photographs with Droplets [J]. Journal of Computer Science and Technology, 2019, 34(6): 1294-1306.
[10] Sai-Sai Gong, Wei Hu, Wei-Yi Ge, Yu-Zhong Qu. Modeling Topic-Based Human Expertise for Crowd Entity Resolution [J]. Journal of Computer Science and Technology, 2018, 33(6): 1204-1218.
[11] Yang Li, Wen-Zhuo Song, Bo Yang. Stochastic Variational Inference-Based Parallel and Online Supervised Topic Model for Large-Scale Text Processing [J]. Journal of Computer Science and Technology, 2018, 33(5): 1007-1022.
[12] Feng-Yu Li, Chang-Bo Wang, Hong Qin, Hong-Yan Quan. Augmented Flow Simulation based on Tight Coupling between Video Reconstruction and Eulerian Models [J]. , 2018, 33(3): 452-462.
[13] Chen-Xu Zhang, Xiao-Wu Chen, Hong-Yu Wu, Bin Zhou. Modeling Garment Seam from a Single Image [J]. , 2018, 33(3): 463-474.
[14] Shi-Yu Jia, Zhen-Kuan Pan, Guo-Dong Wang, Wei-Zhong Zhang, CCF Xiao-Kang Yu. Stable Real-Time Surgical Cutting Simulation of Deformable Objects Embedded with Arbitrary Triangular Meshes [J]. , 2017, 32(6): 1198-1213.
[15] Pei-Feng Li, Guo-Dong Zhou. Three-Layer Joint Modeling of Chinese Trigger Extraction with Constraints on Trigger and Argument Semantics [J]. , 2017, 32(5): 1044-1056.
Full text



[1] Zhou Di;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] Chen Shihua;. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. , 1986, 1(2): 54 -59 .
[3] Li Wanxue;. Almost Optimal Dynamic 2-3 Trees[J]. , 1986, 1(2): 60 -71 .
[4] Feng Yulin;. Recursive Implementation of VLSI Circuits[J]. , 1986, 1(2): 72 -82 .
[5] Liu Mingye; Hong Enyu;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[6] Wang Xuan; Lü Zhimin; Tang Yuhai; Xiang Yang;. A High Resolution Chinese Character Generator[J]. , 1986, 1(2): 1 -14 .
[7] C.Y.Chung; H.R.Hwa;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[8] Sun Zhongxiu; Shang Lujun;. DMODULA:A Distributed Programming Language[J]. , 1986, 1(2): 25 -31 .
[9] Chen Shihua;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[10] Gao Qingshi; Zhang Xiang; Yang Shufan; Chen Shuqing;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .

ISSN 1000-9000(Print)

CN 11-2296/TP

Editorial Board
Author Guidelines
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
  Copyright ©2015 JCST, All Rights Reserved