|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (1): 266-276.doi: 10.1007/s11390-021-0583-x
Special Issue: Computer Networks and Distributed Computing
• Regular Paper • Previous Articles
Li-De Xue1 (薛立德), Ya-Jun Liu2 (刘亚军), Wei Yang1,* (杨威), Member, IEEE, Wei-Lin Chen1 (陈蔚林), and Liu-Sheng Huang1 (黄刘生), Member, IEEE
[1] Laffont J J, Rey P, Tirole J. Network competition: II. Price discrimination. The RAND Journal of Economics, 1998, 29(1): 38-56. DOI: 10.2307/2555815. [2] Varian H R. Price discrimination. In Handbook of Industrial Organization, Schmalensee R, Willig R (eds.), North Halland, 1989, pp.597-654. [3] Pigou A C. Discriminating monopoly. In The Economics of Welfare, Pigou A C, Aslanbeigui N (eds.), Routledge, 2002, pp.275-289. DOI: 10.4324/9781351304368. [4] Belleflamme P, Peitz M. Group pricing and personalized pricing. In Industrial Organization: Markets and Strategies (2nd edition), Belleflamme P, Peitz M (eds.), Cambridge University Press, 2015, pp.197-219. DOI: 10.1017/CBO9781107707139.014. [5] Rayna T, Darlington J, Striukova L. Pricing music using personal data: Mutually advantageous first-degree price discrimination. Electronic Markets, 2015, 25(2): 139-154. DOI: 10.1007/s12525-014-0165-7. [6] Shiller B R. First degree price discrimination using big data. Technical Report, Department of Economics and International Business School, Brandeis University, 2014. https://www.brandeis.edu/economics/RePEc/brd/doc/Brandeis-WP58R2.pdf, Dec. 2020. [7] Shiller B R. Personalized price discrimination using big data. Technical Report, Department of Economics and International Business School, Brandeis University, 2016, https://www.brandeis.edu/economics/RePEc/brd/doc/Br-andeis-WP108.pdf, Dec. 2020. [8] Kshetri N. Big data's impact on privacy, security and consumer welfare. Telecommunications Policy, 2014, 38(11): 1134-1145. DOI: 10.1016/j.telpol.2014.10.002. [9] Zhao Z. Big data price discrimination is repeated, why do ``ctrips'' choose to do evil? Business School, 2019, 177(12): 60-62. (in Chinese) [10] Woodcock R A. Big data, price discrimination, and antitrust. Hastings Law Journal, 2017, 68(6): 1371-1420. DOI: 10.2139/ssrn.2817523. [11] Steppe R. Online price discrimination and personal data: A general data protection regulation perspective. Computer Law & Security Review, 2017, 33(6): 768-785. DOI: 10.1016/j.clsr.2017.05.008. [12] Varian H R. Price discrimination and social welfare. The American Economic Review, 1985, 75(4): 870-875. [13] Adachi T. Third-degree price discrimination, consumption externalities and social welfare. Economica, 2005, 72(285): 171-178. DOI: 10.1111/j.0013-0427.2005.00407.x. [14] Yoshida Y. Third-degree price discrimination in input markets: Output and welfare. American Economic Review, 2000, 90(1): 240-246. DOI: 10.1257/aer.90.1.240. [15] Tirole J. The Theory of Industrial Organization (1st edition). MIT Press Books, 1988. [16] Inderst R, Valletti T M. Buyer power and the ``waterbed effect''. The Journal of Industrial Economics, 2011, 59(1): 1-20. DOI: 10.1111/j.1467-6451.2011.00443.x. [17] Kahneman D, Knetsch J L, Thaler R. Fairness as a constraint on profit seeking: Entitlements in the market. The American Economic Review, 1986, 76(4): 728-741. [18] Baye M R, Morgan J, Scholten P. Price dispersion in the small and in the large: Evidence from an internet price comparison site. The Journal of Industrial Economics, 2004, 52(4): 463-496, DOI: 10.1111/j.0022-1821.2004.00236.x. [19] Thomas R G. Non-risk price discrimination in insurance: Market outcomes and public policy. The Geneva Papers on Risk and Insurance---Issues and Practice, 2012, 37(1): 27-46. DOI: 10.1057/gpp.2011.32. [20] Marks M, Marks J. Bidding method for Internet/wireless advertising and priority ranking in search results. https://www.freepatentsonline.com/20010051911.pdf, Dec. 2020. [21] Jansen B J, Schuster S. Bidding on the buying funnel for sponsored search and keyword advertising. Journal of Electronic Commerce Research, 2011, 12(1): 1-18. [22] Ellison G, Ellison S F. Search, obfuscation, and price elasticities on the Internet. Econometrica, 2010, 77(2): 427-452. DOI: 10.3982/ECTA5708. [23] Garay J, Kiayias A, Leonardos N. The bitcoin backbone protocol with chains of variable difficulty. In Proc. the 37th Annual International Cryptology Conference, August 2017, pp.291-323. DOI: 10.1007/978-3-319-63688-7-10. [24] Huckle S, Bhattacharya R, White M, Beloff N. Internet of things, blockchain and shared economy applications. Procedia Computer Science, 2016, 98: pp.461-466. DOI: 10.1016/j.procs.2016.09.074. [25] Christidis K, Devetsikiotis M. Blockchains and smart contracts for the Internet of Things. IEEE Access, 2016, 4: 2292-2303. DOI: 10.1109/ACCESS.2016.2566339. [26] Kshetri N. Can blockchain strengthen the Internet of Things? IEEE IT Professional, 2017, 19(4): 68-72. DOI: 10.1109/MITP.2017.3051335. [27] Conoscenti M, Vetrò A, De Martin J C D. Blockchain for the Internet of Things: A systematic literature review. In Proc. the 13th IEEE/ACS International Conference of Computer Systems and Applications, November 29--December 2, 2016. DOI: 10.1109/AICCSA.2016.7945805. [28] Dorri A, Kanhere S S, Jurdak R, Gauravaram P. Blockchain for IoT security and privacy: The case study of a smart home. In Proc. the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), March 2017, pp.618-623. DOI: 0.1109/PERCOMW.2017.7917634. [29] Sharma V. An energy-efficient transaction model for the blockchain-enabled Internet of Vehicles (IoV). IEEE Communications Letters, 2019, 23(2): 246-249. DOI: 10.1109/LCOMM.2018.2883629. [30] Liu H, Zhang Y, Yang T. Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Network, 2018, 32(3): 78-83. DOI: 10.1109/MNET.2018.1700344. [31] Jiang T, Fang H, Wang H. Blockchain-based Internet of Vehicles: Distributed network architecture and performance analysis. IEEE Internet of Things Journal, 2019, 6(3): 4640-4649. DOI: 10.1109/JIOT.2018.2874398. [32] Kang J, Xiong Z, Niyato D, Ye D, Kim D I, Zhao J. Toward secure blockchain-enabled Internet of Vehicles: Optimizing consensus management using reputation and contract theory. IEEE Trans. Vehicular Technology, 2019, 68(3): 2906-2920. DOI: 10.1109/TVT.2019.2894944. [33] Weng J, Weng J, Li M, Zhang Y, Luo W. DeepChain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Transactions on Dependable and Secure Computing, 2018, 18(5): 2438-2455. DOI: 10.1109/TDSC.2019.2952332. [34] Cheng K, Fan T, Jin Y, Liu Y, Chen T, Yang Q. Secure-boost: A lossless federated learning framework. arXiv:1901.08755, 2019. http://arxiv.org/abs/1901.08755, Dec. 2020. [35] Zhuo H H, Feng W, Xu Q, Yang Q, Lin Y. Federated reinforcement learning. arXiv:1901.08277, 2019. http://arxiv.org/abs/1901.08277, Dec. 2020. [36] Sompolinsky Y, Zohar A. PHANTOM: A scalable blockDAG protocol. http://eprint.iacr.org/2018/104, Dec. 2020. [37] Xiao S, Wang X A, Wang H. Large-scale electronic voting based on conflux consensus mechanism. In Proc. the 13th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, July 2019, pp.291-299. DOI: 10.1007/978-3-030-22263-5-28. [38] Andrychowicz M, Dziembowski S. PoW-based distributed cryptography with no trusted setup. In Proc. the 35th Annual Cryptology Conference, August 2015, pp.379-399. DOI: 10.1007/978-3-662-48000-7-19. [39] Gilad Y, Hemo R, Micali S et al. Algorand: Scaling Byzantine agreements for cryptocurrencies. In Proc. the 26th Symposium on Operating Systems Principles, October 2017, pp.51-68. DOI: 10.1145/3132747.3132757. [40] Lamport L, Shostak R, Pease M. The Byzantine generals problem. ACM Trans. Programming Languages and Systems, 1982, 4(3): 382-401. DOI: 10.1145/357172.357176. [41] Eyal I, Gencer A E, Sirer E G et al. Bitcoin-NG: A scalable blockchain protocol. In Proc. the 13th USENIX Symposium on Networked Systems Design and Implementation, March 2016, pp.45-59. [42] Kogias E K, Jovanovic P, Gailly N et al. Enhancing bitcoin security and performance with strong consistency via collective signing. In Proc. the 25th USENIX Security Symposium, August 2016, pp.279-296. [43] Schossmaier K, Schmid U, Horauer M, Loy D. Specification and implementation of the universal time coordinated synchronization unit (UTCSU). Real-Time Systems, 1997, 12(3): 295-327. DOI: 10.1023/A:1007953214631. [44] Schmid U. Synchronized universal time coordinated for distributed real-time systems. Control Engineering Practice, 1995, 3(6): 877-884. DOI: 10.1016/0967-0661(95)00073-4. |
[1] | Da-Yu Jia, Jun-Chang Xin, Zhi-Qiong Wang, Han Lei, Guo-Ren Wang. SE-Chain: A Scalable Storage and Efficient Retrieval Model for Blockchain [J]. Journal of Computer Science and Technology, 2021, 36(3): 693-706. |
[2] | Zhi-Guo Wan, Robert H. Deng, David Lee, Ying Li. MicroBTC: Efficient, Flexible and Fair Micropayment for Bitcoin Using Hash Chains [J]. Journal of Computer Science and Technology, 2019, 34(2): 403-415. |
[3] | Rui Yuan, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, Jan Xie. ShadowEth: Private Smart Contract on Public Blockchain [J]. , 2018, 33(3): 542-556. |
[4] | Bao-Kun Zheng, Lie-Huang Zhu, Meng Shen, Feng Gao, Chuan Zhang, Yan-Dong Li, Jing Yang. Scalable and Privacy-Preserving Data Sharing Based on Blockchain [J]. , 2018, 33(3): 557-567. |
[5] | Mingming Wang, Qianhong Wu, Bo Qin, Qin Wang, Jianwei Liu, Zhenyu Guan. Lightweight and Manageable Digital Evidence Preservation System on Bitcoin [J]. , 2018, 33(3): 568-586. |
[6] | Zhimin Gao, Lei Xu, Lin Chen, Xi Zhao, Yang Lu, Weidong Shi. CoC: A Unified Distributed Ledger Based Supply Chain Management System [J]. , 2018, 33(2): 237-248. |
|
|