|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (5): 1102-1117.doi: 10.1007/s11390-021-0846-6
Special Issue: Computer Architecture and Systems
• Special Section of 2020 CCF Integrated Circuit Design and Automation Conference • Previous Articles Next Articles
Yi Zhong1, Jian-Hua Feng1, Senior Member, CCF, Xiao-Xin Cui1,*, Member, CCF, IEEE, and Xiao-Le Cui2, Member, CCF
[1] Bhunia S, Tehranipoor M. Introduction to hardware security. In Hardware Security:A Hands-on Learning Approach (1st edition), Bhunia S, Tehranipoor M (eds.), Morgan Kaufmann, 2019, pp.1-20. DOI:10.1016/B978-0-12-812477-2.00006-X. [2] Rajendran J, Sinanoglu O, Karri R. Regaining trust in VLSI design:Design-for-trust techniques. Proceedings of the IEEE, 2014, 102(8):1266-1282. DOI:10.1109/JPROC.2014.2332154. [3] Hospodar G, Gierlichs B, Mulder E D, Verbauwhede I, Vandewalle J. Machine learning in side-channel analysis:A first study. Journal of Cryptographic Engineering, 2011, 1(4):Article No. 293. DOI:10.1007/s13389-011-0023-x. [4] Gilmore R, Hanley N, O'Neill M. Neural network based attack on a masked implementation of AES. In Proc. the 2015 IEEE International Symposium on Hardware Oriented Security and Trust, May 2015, pp.106-111. DOI:10.1109/HST.2015.7140247. [5] Maghrebi H, Portigliatti T, Prouff E. Breaking cryptographic implementations using deep learning techniques. In Proc. the 2016 International Conference on Security, Privacy, and Applied Cryptography Engineering, December 2016, pp.3-26. DOI:10.1007/978-3-319-49445-61. [6] Das D, Golder A, Danial J, Ghosh S, Raychowdhury A, Sen S. X-DeepSCA:Cross-device deep learning side channel attack. In Proc. the 56th ACM/IEEE Design Automation Conference, June 2019, Article No. 134. DOI:10.1145/3316781.3317934. [7] Das D, Danial J, Golder A, Ghosh S, Wdhury A R, Sen S. Deep learning side-channel attack resilient AES-256 using current domain signature attenuation in 65nm CMOS. In Proc. the 2020 IEEE Custom Integrated Circuits Conference, March 2020. DOI:10.1109/CICC48029.2020.9075889. [8] Shan W W, Zhang S, Xu J M, Lu M Y, Shi L X, Yang J. Machine learning assisted side-channel-attack countermeasure and its application on a 28-nm AES circuit. IEEE Journal of Solid-State Circuits, 2020, 55(3):794-804. DOI:10.1109/JSSC.2019.2953855. [9] Roy J A, Koushanfar F, Markov I L. EPIC:Ending piracy of integrated circuits. In Proc. the 2008 Design, Automation and Test in Europe, March 2008, pp.1069-1074. DOI:10.1109/DATE.2008.4484823. [10] Rajendran J, Zhang H, Zhang C, Rose G S, Pino Y, Sinanoglu O, Karri R. Fault analysis-based logic encryption. IEEE Transactions on Computers, 2015, 64(2):410-424. DOI:10.1109/TC.2013.193. [11] Pritika K, Vinodhini M. Logic encryption of combinational circuits. In Proc. the 3rd International Conference on Electronics, Materials Engineering & Nano-Technology, August 2019. DOI:10.1109/IEMENTech48150.2019.8981198. [12] Kiryakina M A, Kuzmicheva S A, Ivanov M A. Encrypted PRNG by logic encryption. In Proc. the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, January 2020, pp.356-358. DOI:10.1109/EIConRus49466.2020.9038921. [13] Karmakar R, Chatopadhyay S, Kapur R. Encrypt flip-flop:A novel logic encryption technique for sequential circuits. arXiv:1801.04961, 2018. https://arxiv.org/abs/1801.04961, January 2021. [14] Si?ejkovi? D, Merchant F, Leupers R, Ascheid G, Kegreiss ?. Inter-Lock:Logic encryption for processor cores beyond module boundaries. In Proc. the 2019 IEEE European Test Symposium, May 2019. DOI:10.1109/ETS.2019.8791528. [15] Karmakar R, Prasad N, Chattopadhyay S, Kapur R, Sengupta I. A new logic encryption strategy ensuring key interdependency. In Proc. the 30th International Conference on VLSI Design and the 16th International Conference on Embedded Systems, January 2017, pp.429-434. DOI:10.1109/VLSID.2017.29. [16] Juretus K, Savidis I. Reduced overhead gate level logic encryption. In Proc. the 2016 International Great Lakes Symposium on VLSI, May 2016, pp.15-20. DOI:10.1145/2902961.2902972. [17] Chen X M, Liu Q Y, Wang Y, Xu Q, Yang H Z. Lowoverhead implementation of logic encryption using gate replacement techniques. In Proc. the 18th International Symposium on Quality Electronic Design, March 2017, pp.257-263. DOI:10.1109/ISQED.2017.7918325. [18] Yasin M, Mazumdar B, Ali S S, Sinanoglu O. Security analysis of logic encryption against the most effective sidechannel attack:DPA. In Proc. the 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, October 2015, pp.97-102. DOI:10.1109/DFT.2015.7315143. [19] Yasin M, Rajendran J, Sinanoglu O, Karri R. On improving the security of logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(9):1411-1424. DOI:10.1109/TCAD.2015.2511144. [20] Lee Y W, Touba N A. Improving logic obfuscation via logic cone analysis. In Proc. the 16th Latin-American Test Symposium, March 2015. DOI:10.1109/LATW.2015.7102410. [21] Plaza S M, Markov I L. Solving the third-shift problem in IC piracy with test-aware logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(6):961-971. DOI:10.1109/TCAD.2015.2404876. [22] Subramanyan P, Ray S, Malik S. Evaluating the security of logic encryption algorithms. In Proc. the 2015 IEEE International Symposium on Hardware Oriented Security and Trust, May 2015, pp.137-143. DOI:10.1109/HST.2015.7140252. [23] Yasin M, Mazumdar B, Rajendran J, Sinanoglu O. SARLock:SAT attack resistant logic locking. In Proc. the 2016 IEEE International Symposium on Hardware Oriented Security and Trust, May 2016, pp.236-241. DOI:10.1109/HST.2016.7495588. [24] Xie Y, Srivastava A. Anti-SAT:Mitigating SAT attack on logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(2):199-207. DOI:10.1109/TCAD.2018.2801220. [25] Chen Y C. Tree-based logic encryption for resisting SAT attack. In Proc. the 26th IEEE Asian Test Symposium, November 2017, pp.46-51. DOI:10.1109/ATS.2017.21. [26] Shen Y Q, Rezaei A, Zhou H. SAT-based bit-flipping attack on logic encryptions. In Proc. the 2018 Design, Automation & Test in Europe Conference & Exhibition, March 2018, pp.629-632. DOI:10.23919/DATE.2018.8342086. [27] Shen Y Q, Li Y, Kong S Y, Rezaei A, Zhou H. SigAttack:New high-level SAT-based attack on logic encryptions. In Proc. the 2019 Design, Automation & Test in Europe Conference & Exhibition, March 2019, pp.940-943. DOI:10.23919/DATE.2019.8714924. [28] Kasarabada Y, Chen S Y, Vemuri R. On SATbased attacks on encrypted sequential logic circuits. In Proc. the 20th International Symposium on Quality Electronic Design, March 2019, pp.204-211. DOI:10.1109/ISQED.2019.8697421. [29] Rajendran J, Pino Y, Sinanoglu O, Karri R. Logic encryption:A fault analysis perspective. In Proc. the 2012 Design, Automation & Test in Europe Conference & Exhibition, March 2012, pp.953-958. DOI:10.1109/DATE.2012.6176634. [30] Karmakar R, Chattopadhyay S, Kapur R. Enhancing security of logic encryption using embedded key generation unit. In Proc. the 2017 International Test Conference in Asia (ITC-Asia), September 2017, pp.131-136. DOI:10.1109/ITC-ASIA.2017.8097127. [31] Mobaraki S, Amirkhani A, Atani R E. A novel PUF based logic encryption technique to prevent SAT attacks and trojan insertion. In Proc. the 9th International Symposium on Telecommunications, December 2018, pp.507-513. DOI:10.1109/ISTEL.2018.8661086. |
[1] | Jia-Jun Li, Ke Wang, Hao Zheng, and Ahmed Louri. GShuttle: Optimizing Memory Access Efficiency for Graph Convolutional Neural Network Accelerators [J]. Journal of Computer Science and Technology, 2023, 38(1): 115-127. |
[2] | Xiao-Bing Chen, Hao Qi, Shao-Hui Peng, Yi-Min Zhuang, Tian Zhi, and Yun-Ji Chen. Tetris: A Heuristic Static Memory Management Framework for Uniform Memory Multicore Neural Network Accelerators [J]. Journal of Computer Science and Technology, 2022, 37(6): 1255-1270. |
[3] | Xu-Gang Wu, Hui-Jun Wu, Xu Zhou, Xiang Zhao, and Kai Lu. Towards Defense Against Adversarial Attacks on Graph Neural Networks via Calibrated Co-Training [J]. Journal of Computer Science and Technology, 2022, 37(5): 1161-1175. |
[4] | Xiao-Qing Deng, Bo-Lin Chen, Wei-Qi Luo, and Da Luo. Universal Image Steganalysis Based on Convolutional Neural Network with Global Covariance Pooling [J]. Journal of Computer Science and Technology, 2022, 37(5): 1134-1145. |
[5] | Zhi-Jing Wu, Yi-Qun Liu, Jia-Xin Mao, Min Zhang, and Shao-Ping Ma. Leveraging Document-Level and Query-Level Passage Cumulative Gain for Document Ranking [J]. Journal of Computer Science and Technology, 2022, 37(4): 814-838. |
[6] | Linfeng Shen, Yuchi Chen, and Jiangchuan Liu. Gaze-Assisted Viewport Control for 360° Video on Smartphone [J]. Journal of Computer Science and Technology, 2022, 37(4): 906-918. |
[7] | Zheng Chen, Xiao-Nan Fang, and Song-Hai Zhang. Local Homography Estimation on User-Specified Textureless Regions [J]. Journal of Computer Science and Technology, 2022, 37(3): 615-625. |
[8] | Hua-Peng Wei, Ying-Ying Deng, Fan Tang, Xing-Jia Pan, and Wei-Ming Dong. A Comparative Study of CNN- and Transformer-Based Visual Style Transfer [J]. Journal of Computer Science and Technology, 2022, 37(3): 601-614. |
[9] | Xiao-Zheng Xie, Jian-Wei Niu, Xue-Feng Liu, Qing-Feng Li, Yong Wang, Jie Han, and Shaojie Tang. DG-CNN: Introducing Margin Information into Convolutional Neural Networks for Breast Cancer Diagnosis in Ultrasound Images [J]. Journal of Computer Science and Technology, 2022, 37(2): 277-294. |
[10] | Xin-Feng Wang, Xiang Zhou, Jia-Hua Rao, Zhu-Jin Zhang, and Yue-Dong Yang. Imputing DNA Methylation by Transferred Learning Based Neural Network [J]. Journal of Computer Science and Technology, 2022, 37(2): 320-329. |
[11] | Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. |
[12] | Geun Yong Kim, Joon-Young Paik, Yeongcheol Kim, and Eun-Sun Cho. Byte Frequency Based Indicators for Crypto-Ransomware Detection from Empirical Analysis [J]. Journal of Computer Science and Technology, 2022, 37(2): 423-442. |
[13] | Jian-Zhe Zhao, Xing-Wei Wang, Ke-Ming Mao, Chen-Xi Huang, Yu-Kai Su, and Yu-Chen Li. Correlated Differential Privacy of Multiparty Data Release in Machine Learning [J]. Journal of Computer Science and Technology, 2022, 37(1): 231-251. |
[14] | Dan-Hao Zhu, Xin-Yu Dai, Jia-Jun Chen. Pre-Train and Learn: Preserving Global Information for Graph Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(6): 1420-1430. |
[15] | Feng Wang, Guo-Jie Luo, Guang-Yu Sun, Yu-Hao Wang, Di-Min Niu, Hong-Zhong Zheng. Area Efficient Pattern Representation of Binary Neural Networks on RRAM [J]. Journal of Computer Science and Technology, 2021, 36(5): 1155-1166. |
|
|