Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (2): 347-360.doi: 10.1007/s11390-021-0849-3

Special Issue: Emerging Areas

• Special Section on AI and Big Data Analytics in Biology and Medicine • Previous Articles     Next Articles

CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology

Hua Chen1, Juan Liu1,*, Senior Member, CCF, Qing-Man Wen1, Zhi-Qun Zuo1, Jia-Sheng Liu1, Jing Feng1, Bao-Chuan Pang2, and Di Xiao2        

  1. 1 Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan 430072, China;
    2 Landing Artificial Intelligence Center for Pathological Diagnosis, Wuhan University, Wuhan 430072, China
  • Received:2020-07-30 Revised:2021-02-17 Online:2021-03-05 Published:2021-04-01
  • Contact: Juan Liu E-mail:liujuan@whu.edu.cn
  • About author:Hua Chen is a Ph.D. candidate in the School of Computer Science, Wuhan University, Wuhan. His current research interests include deep learning, medical image processing, and image classification and segmentation.
  • Supported by:
    This work was supported by the Major Projects of Technological Innovation in Hubei Province of China under Grant Nos. 2019AEA170 and 2019ACA161, the Frontier Projects of Wuhan for Application Foundation under Grant No. 2019010701011381, and the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University under Grant No. ZNJC201919.

Identification of abnormal cervical cells is a significant problem in computer-aided diagnosis of cervical cancer. In this study, we develop an artificial intelligence (AI) system, named CytoBrain, to automatically screen abnormal cervical cells to help facilitate the subsequent clinical diagnosis of the subjects. The system consists of three main modules: 1) the cervical cell segmentation module which is responsible for efficiently extracting cell images in a whole slide image (WSI); 2) the cell classification module based on a compact visual geometry group (VGG) network called CompactVGG which is the key part of the system and is used for building the cell classifier; 3) the visualized human-aided diagnosis module which can automatically diagnose a WSI based on the classification results of cells in it, and provide two visual display modes for users to review and modify. For model construction and validation, we have developed a dataset containing 198 952 cervical cell images (60 238 positive, 25 001 negative, and 113 713 junk) from samples of 2 312 adult women. Since CompactVGG is the key part of CytoBrain, we conduct comparison experiments to evaluate its time and classification performance on our developed dataset and two public datasets separately. The comparison results with VGG11, the most efficient one in the family of VGG networks, show that CompactVGG takes less time for either model training or sample testing. Compared with three sophisticated deep learning models, CompactVGG consistently achieves the best classification performance. The results illustrate that the system based on CompactVGG is efficient and effective and can support for large-scale cervical cancer screening.

Key words: cervical cancer screening; visual geometry group (VGG); deep learning; artificial intelligence (AI); classification;

[1] Jemal A, Center M M, DeSantis C, Ward E M. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology Biomarkers and Prevention, 2010, 19(8):1893-1907. DOI:10.1158/1055-9965.EPI-10-0437.
[2] Prat J, Franceschi S. Cancers of the female reproductive organs. In World Cancer Report 2014, Stewart B W, Wild C P (eds.), International Agency for Research on Cancer, 2014, pp.465-481.
[3] Adem K, Kiliçarslan S, Cömert O. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Systems with Applications, 2019, 115:557-564. DOI:10.1016/j.eswa.2018.08.050.
[4] Kurnianingsih, Allehaibi K H S, Nugroho L E, Widyawan, Lazuardi L, Prabuwono A S, Mantoro T. Segmentation and classification of cervical cells using deep learning. IEEE Access, 2019, 7(99):116925-116941. DOI:10.1109/ACCESS.2019.2936017.
[5] Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:A Cancer Journal for Clinicians, 2018, 68(6):394-424. DOI:10.3322/caac.21492.
[6] Wittet S, Goltz S, Cody A. Progress in cervical cancer prevention:The CCA report card. Technical Report, Cervical Cancer Action, 2011. https://path.azureedge.net/media/documents/RHccareportcard.pdf, Mar. 2020.
[7] Schwaiger C, Aruda M, Lacoursiere S, Rubin R. Current guidelines for cervical cancer screening. Journal of the American Academy of Nurse Practitioners, 2012, 24(7):417-424. DOI:10.1111/j.1745-7599.2012.00704.x.
[8] William W, Ware A, Basaza-Ejiri A H, Obungoloch J. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Computer Methods and Programs in Biomedicine, 2018, 164:15-22. DOI:10.1016/j.cmpb.2018.05.034.
[9] William W, Ware A, Basaza-Ejiri A H, Obungoloch J. Cervical cancer classification from Pap-smears using an enhanced fuzzy C-means algorithm. Informatics in Medicine Unlocked, 2019, 14:23-33. DOI:10.1016/j.imu.2019.02.001.
[10] Bora K, Chowdhury M, Mahanta L B, Kundu M K, Das A K. Automated classification of Pap smear images to detect cervical dysplasia. Computer Methods and Programs in Biomedicine, 2017, 138:31-47. DOI:10.1016/j.cmpb.2016.10.001.
[11] McDonald J T, Kennedy S. Cervical cancer screening by immigrant and minority women in Canada. Journal of Immigrant and Minority Health, 2007, 9(4):323-334. DOI:10.1007/s10903-007-9046-x.
[12] Elsheikh T M, Austin R M, Chhieng D F, Miller F S, Moriarty A T, Renshaw A A. American society of cytopathology workload recommendations for automated Pap test screening:Developed by the productivity and quality assurance in the era of automated screening task force. Diagnostic Cytopathology, 2013, 41(2):174-178. DOI:10.1002/dc.22817.
[13] Yamal J M, Guillaud M, Atkinson E N, Follen M, MacAulay C, Cantor S B, Cox D D. Prediction using hierarchical data:Applications for automated detection of cervical cancer. Statistical Analysis and Data Mining, 2015, 8(2):65-74. DOI:10.1002/sam.11261.
[14] Su J, Xu X, He Y, Song J. Automatic detection of cervical cancer cells by a two-level cascade classification system. Analytical Cellular Pathology, 2016, 2016:Article No. 9535027. DOI:10.1155/2016/9535027.
[15] Kurniawati Y E, Permanasari A E, Fauziati S. Comparative study on data mining classification methods for cervical cancer prediction using pap smear results. In Proc. the 1st International Conference on Biomedical Engineering, Oct. 2016. DOI:10.1109/IBIOMED.2016.7869827.
[16] Sharma M, Singh S K, Agrawal P, Madaan V. Classification of clinical dataset of cervical cancer using KNN. Indian Journal of Science and Technology, 2016, 9(28):1-5. DOI:10.17485/ijst/2016/v9i28/98380.
[17] Liu Y, Zhang P, Song Q, Li A, Zhang P, Gui Z. Automatic segmentation of cervical nuclei based on deep learning and a conditional random field. IEEE Access, 2018, 6:53709-53721. DOI:10.1109/ACCESS.2018.2871153.
[18] Wang P, Wang L, Li Y, Song Q, Lv S, Hu X. Automatic cell nuclei segmentation and classification of cervical Pap smear images. Biomedical Signal Processing and Control, 2019, 48:93-103. DOI:10.1016/j.bspc.2018.09.008.
[19] Gupta R, Sarwar A, Sharma V. Screening of cervical cancer by artificial intelligence based analysis of digitized Papanicolaou-smear images. International Journal of Contemporary Medical Research, 2017, 4(5):1108-1113. DOI:10.21276/ijcmr.
[20] Wu W, Zhou H. Data-driven diagnosis of cervical cancer with support vector machine-based approaches. IEEE Access, 2017, 5:25189-25195. DOI:10.1109/ACCESS.2017.2763984.
[21] Zhang L, Lu L, Nogues I, Summers R M, Liu S, Yao J. DeepPap:Deep convolutional networks for cervical cell classification. IEEE Journal of Biomedical and Health Informatics, 2017, 21(6):1633-1643. DOI:10.1109/JBHI.2017.2705583.
[22] Nayar R, Wilbur D C. The Bethesda System for Reporting Cervical Cytology:Definitions, Criteria, and Explanatory Notes (3rd edition). Springer, 2015.
[23] Bay H, Tuytelaars T, Gool L V. SURF:Speeded up robust features. In Proc. the 9th European Conference on Computer Vision, May 2006, pp.404-417. DOI:10.1007/1174402332.
[24] Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, 1979, 9(1):62-66. DOI:10.1109/TSMC.1979.4310076.
[25] Soille P. Morphological Image Analysis:Principles and Applications (2nd edition). Springer-Verlag Berlin Heidelberg Publisher, 2003. DOI:10.1007/978-3-662-05088-0.
[26] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/pdf/1409.1556.pdf, Mar. 2020.
[27] Wang J, Perez L. The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.04621, 2017. https://arxiv.org/pdf/1712.04621.pdf, Mar. 2020.
[28] Son J, Shin J Y, Kim H D, Jung K H, Park K H, Park S J. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology, 2020, 127(1):85-94. DOI:10.1016/j.ophtha.2019.05.029.
[29] Chalakkal R J, Abdulla W H, Thulaseedharan S S. Quality and content analysis of fundus images using deep learning. Computers in Biology and Medicine, 2019, 108:317-331. DOI:10.1016/j.compbiomed.2019.03.019.
[30] Ba J L, Kiros J R, Hinton G E. Layer normalization. arXiv:1607.06450, 2016. https://arxiv.org/pdf/160-7.06450.pdf, Mar. 2020.
[31] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proc. the 14th International Joint Conference on Artificial Intelligence, Aug. 1995, pp.1137-1143.
[32] Refaeilzadeh P, Tang L, Liu H. Cross-validation. In Encyclopedia of Database Systems, Liu L, Özsu M T (eds.), Springer, 2016, pp.532-538. DOI:10.1007/978-0-387-39940-9565.
[33] Zeiler M D. ADADELTA:An adaptive learning rate method. arXiv:1212.5701, 2012. https://arxiv.org/pdf/1212.5701.pdf, Mar. 2020.
[34] Xiang S, Liang Q, Hu Y, Tang P, Coppola G, Zhang D, Sun W. AMC-Net:Asymmetric and multi-scale convolutional neural network for multi-label HPA classification. Computer Methods and Programs in Biomedicine, 2019, 178:275-287. DOI:10.1016/j.cmpb.2019.07.009.
[35] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15:1929-1958.
[36] Nielsen M. Improving the way neural networks learn. http://neuralnetworksanddeeplearning.com/chap3.html, Mar. 2020.
[37] Wang Y, Shen X, Yang Y. The classification of Chinese sensitive information based on BERT-CNN. In Artificial Intelligence Algorithms and Applications, Li K, Li W, Wang H, Liu Y (eds.), Springer, 2020, pp.269-280. DOI:10.1007/978-981-15-5577-020.
[38] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. arXiv:1512.00567, 2015. https://arxiv.org/pdf/15-12.00567.pdf, Mar. 2020.
[39] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.770-778. DOI:10.1109/CVPR.2016.90.
[40] Huang G, Liu Z, Maaten L V D, Weinberger K Q. Densely connected convolutional networks. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Jul. 2017, pp.2261-2269. DOI:10.1109/CVPR.2017.243.
[41] Paul P R, Bhowmik M K, Bhattacharjee D. Automated cervical cancer detection using Pap smear images. In Proc. the 4th International Conference on Soft Computing for Problem Solving, Dec. 2014, pp.267-278. DOI:10.1007/978-81-322-2217-023.
[42] Plissiti M E, Dimitrakopoulos P, Sfikas G, Nikou C, Krikoni O, Charchanti A. SIPaKMeD:A new dataset for feature and image based classification of normal and pathological cervical cells in Pap smear images. In Proc. the 25th IEEE International Conference on Image Processing, Oct. 2018, pp.3144-3148. DOI:10.1109/ICIP.2018.8451588.
[1] Peng-Fei Fang, Xian Li, Yang Yan, Shuai Zhang, Qi-Yue Kang, Xiao-Fei Li, and Zhen-Zhong Lan. Connecting the Dots in Self-Supervised Learning: A Brief Survey for Beginners [J]. Journal of Computer Science and Technology, 2022, 37(3): 507-526.
[2] Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343.
[3] Songjie Niu, Shimin Chen. TransGPerf: Exploiting Transfer Learning for Modeling Distributed Graph Computation Performance [J]. Journal of Computer Science and Technology, 2021, 36(4): 778-791.
[4] Zhi-Xin Qi, Hong-Zhi Wang, An-Jie Wang. Impacts of Dirty Data on Classification and Clustering Models: An Experimental Evaluation [J]. Journal of Computer Science and Technology, 2021, 36(4): 806-821.
[5] Jing-Xuan Zhang, Chuan-Qi Tao, Zhi-Qiu Huang, Xin Chen. Discovering API Directives from API Specifications with Text Classification [J]. Journal of Computer Science and Technology, 2021, 36(4): 922-943.
[6] Lan Chen, Juntao Ye, Xiaopeng Zhang. Multi-Feature Super-Resolution Network for Cloth Wrinkle Synthesis [J]. Journal of Computer Science and Technology, 2021, 36(3): 478-493.
[7] Yu-Jie Yuan, Yukun Lai, Tong Wu, Lin Gao, Li-Gang Liu. A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint [J]. Journal of Computer Science and Technology, 2021, 36(3): 520-554.
[8] Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. A Survey of Text Summarization Approaches Based on Deep Learning [J]. Journal of Computer Science and Technology, 2021, 36(3): 633-663.
[9] Wei Du, Yu Sun, Hui-Min Bao, Liang Chen, Ying Li, Yan-Chun Liang. DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning [J]. Journal of Computer Science and Technology, 2021, 36(2): 234-247.
[10] Jun Gao, Paul Liu, Guang-Di Liu, Le Zhang. Robust Needle Localization and Enhancement Algorithm for Ultrasound by Deep Learning and Beam Steering Methods [J]. Journal of Computer Science and Technology, 2021, 36(2): 334-346.
[11] Xia-An Bi, Zhao-Xu Xing, Rui-Hui Xu, Xi Hu. An Efficient WRF Framework for Discovering Risk Genes and Abnormal Brain Regions in Parkinson's Disease Based on Imaging Genetics Data [J]. Journal of Computer Science and Technology, 2021, 36(2): 361-374.
[12] Bo-Wei Zou, Rong-Tao Huang, Zeng-Zhuang Xu, Yu Hong, Guo-Dong Zhou. Language Adaptation for Entity Relation Classification via Adversarial Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(1): 207-220.
[13] Nuo Qun, Hang Yan, Xi-Peng Qiu, Xuan-Jing Huang. Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node [J]. Journal of Computer Science and Technology, 2020, 35(5): 1115-1126.
[14] Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults [J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146.
[15] Punit Kumar, Atul Gupta. Active Learning Query Strategies for Classification, Regression, and Clustering: A Survey [J]. Journal of Computer Science and Technology, 2020, 35(4): 913-945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhou Di;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] Li Wei;. A Structural Operational Semantics for an Edison Like Language(2)[J]. , 1986, 1(2): 42 -53 .
[3] Chen Shihua;. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. , 1986, 1(2): 54 -59 .
[4] Sun Zhongxiu; Shang Lujun;. DMODULA:A Distributed Programming Language[J]. , 1986, 1(2): 25 -31 .
[5] Wang Jianchao; Wei Daozheng;. An Effective Test Generation Algorithm for Combinational Circuits[J]. , 1986, 1(4): 1 -16 .
[6] Chen Zhaoxiong; Gao Qingshi;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[7] Huang Heyan;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[8] Zheng Guoliang; Li Hui;. The Design and Implementation of the Syntax-Directed Editor Generator(SEG)[J]. , 1986, 1(4): 39 -48 .
[9] Huang Xuedong; Cai Lianhong; Fang Ditang; Chi Bianjin; Zhou Li; Jiang Li;. A Computer System for Chinese Character Speech Input[J]. , 1986, 1(4): 75 -83 .
[10] Xu Xiaoshu;. Simplification of Multivalued Sequential SULM Network by Using Cascade Decomposition[J]. , 1986, 1(4): 84 -95 .

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved