|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (2): 248-260.doi: 10.1007/s11390-021-0856-4
Special Issue: Emerging Areas
• Special Section on AI and Big Data Analytics in Biology and Medicine • Previous Articles Next Articles
Jian Liu1,*, Member, CCF, Jia-Liang Sun1, and Yong-Zhuang Liu2
[1] Desprez-Loustau M L, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo D M. The fungal dimension of biological invasions. Trends in Ecology & Evolution, 2007, 22(9):472-480. DOI:10.1016/j.tree.2007.04.005. [2] Schuster S C. Next-generation sequencing transforms today's biology. Nature Methods, 2008, 5(1):16-18. DOI:10.1038/nmeth1156. [3] van Dijk E L, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends in Genetics, 2014, 30(9):418-426. DOI:10.1016/j.tig.2014.07.001. [4] van Dijk E L, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends in Genetics, 2018, 34(9):666-681. DOI:10.1016/j.tig.2018.05.008. [5] Dannemiller K C, Reeves D, Bibby K, Yamamoto N, Peccia J. Fungal high-throughput taxonomic identification tool for use with next-generation sequencing (FHiTINGS). Journal of Basic Microbiology, 2014, 54(4):315-321. DOI:10.1002/jobm.201200507. [6] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden T L. BLAST+:Architecture and applications. BMC Bioinformatics, 2009, 10(1):Article No. 421. DOI:10.1186/1471-2105-10-421. [7] Gweon H S, Oliver A, Taylor J, Booth T, Gibbs M, Read D S, Griffiths R I, Schonrogge K. PIPITS:An automated pipeline for analyses of fungal internal transcribed spacer sequences from the I llumina sequencing platform. Methods in Ecology and Evolution, 2015, 6(8):973-980. DOI:10.1111/2041-210X.12399. [8] Eng A, Verster A J, Borenstein E. Meta-LAFFA:A flexible, end-to-end, distributed computing-compatible metagenomic functional annotation pipeline. BMC Bioinformatics, 2020, 21(1):Article No. 471. DOI:10.1186/s12859-020-03815-9. [9] Clarke E L, Taylor L J, Zhao C, Connell A, Lee J J, Fett B, Bushman F D, Bittinger K. Sunbeam:An extensible pipeline for analyzing metagenomic sequencing experiments. Microbiome, 2019, 7(1):Article No. 46. DOI:10.1186/s40168-019-0658-x. [10] Rhoads A, Au K F. PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics, 2015, 13(5):278-289. DOI:10.1016/j.gpb.2015.08.002. [11] Seemann T. Prokka:Rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14):2068-2069. DOI:10.1093/bioinformatics/btu153. [12] Jolley K A, Maiden M C. BIGSdb:Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 2010, 11(1):Article No. 595. DOI:10.1186/1471-2105-11-595. [13] Chen S, Zhou Y, Chen Y, Gu J. FASTQ:An ultra-fast allin-one FASTQ preprocessor. Bioinformatics, 2018, 34(17):i884-i890. DOI:10.1093/bioinformatics/bty560. [14] Bolger A M, Lohse M, Usadel B. Trimmomatic:A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15):2114-2120. DOI:10.1093/bioinformatics/btu170. [15] Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 2011, 17(1):10-12. DOI:10.14806/ej.17.1.200. [16] Benson D A, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman D J, Ostell J, Sayers E W. GenBank. Nucleic Acids Research, 2012, 41(D1):D36-D42. DOI:10.1093/nar/gks1195. [17] Li D, Liu C M, Luo R, Sadakane K, Lam T W. MEGAHIT:An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31(10):1674-1676. DOI:10.1093/bioinformatics/btv033. [18] Zerbino D R, Birney E. Velvet:Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 2008, 18(5):821-829. DOI:10.1101/gr.074492.107. [19] Bankevich A, Nurk S, Antipov D et al. SPAdes:A new genome assembly algorithm and its applications to singlecell sequencing. Journal of Computational Biology, 2012, 19(5):455-477. DOI:10.1089/cmb.2012.0021. [20] Koren S, Walenz B P, Berlin K, Miller J R, Bergman N H, Phillippy A M. Canu:Scalable and accurate longread assembly via adaptive k-mer weighting and repeat separation. Genome Research, 2017, 27(5):722-736. DOI:10.1101/gr.215087.116. [21] Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST:Quality assessment tool for genome assemblies. Bioinformatics, 2013, 29(8):1072-1075. DOI:10.1093/bioinformatics/btt086. [22] Cock P J, Antao T, Chang J T et al. Biopython:Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 2009, 25(11):1422-1423. DOI:10.1093/bioinformatics/btp163. [23] Rowe W P. When the levee breaks:A practical guide to sketching algorithms for processing the flood of genomic data. Genome Biology, 2019, 20(1):Article No. 199. DOI:10.1186/s13059-019-1809-x. [24] Li H. Minimap2:Pairwise alignment for nucleotide sequences. Bioinformatics, 2018, 34(18):3094-3100. DOI:10.1093/bioinformatics/bty191. [25] Kanz C, Aldebert P, Althorpe N et al. The EMBL nucleotide sequence database. Nucleic Acids Research, 2005, 33(suppl 1):D29-D33. DOI:10.1093/nar/gki098. [26] Cornish-Bowden A. Nomenclature for incompletely specified bases in nucleic acid sequences:Recommendations 1984. Nucleic Acids Research, 1985, 13(9):3021-3030. DOI:10.1093/nar/13.9.3021. [27] Caboche S, Even G, Loywick A, Audebert C, Hot D. MICRA:An automatic pipeline for fast characterization of microbial genomes from high-throughput sequencing data. Genome Biology, 2017, 18(1):Article No. 233. DOI:10.1186/s13059-017-1367-z. |
No related articles found! |
|