|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (2): 261-275.doi: 10.1007/s11390-021-0866-2
Special Issue: Emerging Areas
• Special Section on AI and Big Data Analytics in Biology and Medicine • Previous Articles Next Articles
Lian-Lian Wu1,2,?, Yu-Qi Wen2,?, Xiao-Xi Yang2,3, Bo-Wei Yan2, Song He2,*, and Xiao-Chen Bo1,2,*
[1] Hartwell L H, Szankasi P, Roberts C J et al. Integrating genetic approaches into the discovery of anticancer drugs. Science, 1997, 278(5340):1064-1068. DOI:10.1126/science.278.5340.1064. [2] Boone C, Bussey H, Andrews B J. Exploring genetic interactions and networks with yeast. Nature Reviews Genetics, 2007, 8(6):437-449. DOI:10.1038/nrg2085. [3] Chan D A, Giaccia A J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nature Reviews Drug Discovery, 2011, 10(5):351-364. DOI:10.1038/nrd3374. [4] Deng X, Das S, Valdez K et al. SL-BioDP:Multi-cancer interactive tool for prediction of synthetic lethality and response to cancer treatment. Cancers (Basel), 2019, 11(11):Article No. 1682. DOI:10.3390/cancers11111682. [5] McLornan D P, List A, Mufti G J. Applying synthetic lethality for the selective targeting of cancer. New England Journal of Medicine, 2014, 371(18):1725-1735. DOI:10.1056/NEJMra1407390. [6] Bryant H E, Schultz N, Thomas H D et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADPribose) polymerase. Nature, 2007, 434(7035):913-917. DOI:10.1038/nature03443. [7] Downward J. Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 2003, 3(1):11-22. DOI:10.1038/nrc969. [8] Fong P C, Boss D S, Yap T A et al. Inhibition of poly(ADPribose) polymerase in tumors from BRCA mutation carriers. New England Journal of Medicine, 2009, 361(2):123-134. DOI:10.1056/NEJMoa0900212. [9] Jackson S P, Bartek J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267):1071-1078. DOI:10.1038/nature08467. [10] Lee J S, Das A, Auslander N et al. Harnessing synthetic lethality to predict the response to cancer treatment. Nature Communications, 2018, 9(1):Article No. 2546. DOI:10.1038/s41467-018-04647-1. [11] Simons A, Dafni N, Dotan I. Establishment of a chemical synthetic lethality screen in cultured human cells. Genome Research, 2001, 11(2):266-273. DOI:10.1101/gr.154201. [12] Barbie D A, Tamayo P, Boehm J S et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269):108-112. DOI:10.1038/nature08460. [13] Steckel M, Molina-Arcas M, Weigelt B et al. Determination of synthetic lethal interactions in KRAS oncogenedependent cancer cells reveals novel therapeutic targeting strategies. Cell Research, 2012, 22(8):1227-1245. DOI:10.1038/cr.2012.82. [14] Han K, Jeng E E, Hess G T et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nature Biotechnology, 2017, 35(5):463-474. DOI:10.1038/nbt.3834. [15] Du D, Roguev A, Gordon D E et al. Genetic interaction mapping in mammalian cells using CRISPR interference. Nature Methods, 2017, 14(6):577-580. DOI:10.1038/nmeth.4286. [16] Bleicher K H, Böhm H J, Müller K et al. Hit and lead generation:Beyond high-throughput screening. Nature Reviews Drug Discovery, 2003, 2(5):369-378. DOI:10.1038/nrd1086. [17] Bajorath J. Integration of virtual and high-throughput screening. Nature Reviews Drug Discovery, 2002, 1(11):882-894. DOI:10.1038/nrd941. [18] Guo J, Liu H, Zheng J. SynLethDB:Synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res., 2016, 44(D1):D1011-D1017. DOI:10.1093/nar/gkv1108. [19] Lu X, Kensche P R, Huynen M A et al. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets. Nature Communications, 2013, 4:Article No. 2124. DOI:10.1038/ncomms3124. [20] Srivas R, Shen J P, Yang C C et al. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Molecular Cell, 2016, 63(3):514-525. DOI:10.1016/j.molcel.2016.06.022. [21] Kim J W, Botvinnik O B, Abudayyeh O et al. Characterizing genomic alterations in cancer by complementary functional associations. Nature Biotechnology, 2016, 34(5):539-546. DOI:10.1038/nbt.3527. [22] Cho H, Berger B, Peng J. Compact integration of multinetwork topology for functional analysis of genes. Cell Systems, 2016, 3(6):540-548. DOI:10.1016/j.cels.2016.10.017. [23] Jerby-Arnon L, Pfetzer N, Waldman Y et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell, 2014, 158(5):1199-1209. DOI:10.1016/j.cell.2014.07.027. [24] Wan F, Li S, Tian T et al. EXP2SL:A machine learning framework for cell-line-specific synthetic lethality prediction. Frontiers in Pharmacology, 2020, 11:Article No. 112. DOI:10.3389/fphar.2020.00112. [25] Liany H, Jeyasekharan A, Rajan V. Predicting synthetic lethal interactions using heterogeneous data sources. Bioinformatics, 2020, 36(7):2209-2216. DOI:10.1093/bioinformatics/btz893. [26] Li P, Huang C, Fu Y et al. Large-scale exploration and analysis of drug combinations. Bioinformatics, 2015, 31(12):2007-2016. DOI:10.1093/bioinformatics/btv080. [27] Menche J, Sharma A, Kitsak M et al. Uncovering diseasedisease relationships through the incomplete interactome. Science, 2015, 347(6224):Article No. 1257601. DOI:10.1126/science.1257601. [28] Duan Q, Flynn C, Niepel M et al. LINCS Canvas Browser:Interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Research, 2014, 42(W1):W449-W460. DOI:10.1093/nar/gku476. [29] The UniProt Consortium. UniProt:A hub for protein information. Nucleic Acids Research, 2015, 43(D1):D204-D212. DOI:10.1093/nar/gku989. [30] Davis A P, Grondin C J, Johnson R J et al. The comparative toxicogenomics database:Update 2019. Nucleic Acids Research, 2019, 47(D1):D948-D954. DOI:10.1093/nar/gky868. [31] Subramanian A, Tamayo P, Mootha V K et al. Gene set enrichment analysis:A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43):15545-15550. DOI:0.1073/pnas.0506580102. [32] Iorio F, Tagliaferri R, Di Bernardo D. Identifying network of drug mode of action by gene expression profiling. Journal of Computational Biology, 2009, 16(2):241-251. DOI:10.1089/cmb.2008.10TT. [33] Smith T F, Waterman M S. Identification of common molecular subsequences. Journal of Molecular Biology, 1981, 147(1):195-197. DOI:10.1016/0022-2836(81)90087-5. [34] Perlman L, Gottlieb A, Atias N et al. Combining drug and gene similarity measures for drug-target elucidation. Journal of Computational Biology, 2011, 18(2):133-145. DOI:10.1089/cmb.2010.0213. [35] Yu G, Li F, Qin Y et al. GOSemSim:An R package for measuring semantic similarity among GO terms and gene products. Bioinformatics, 2010, 26(7):976-978. DOI:10.1093/bioinformatics/btq064. [36] Wang J Z, Du Z, Payattakool R et al. A new method to measure the semantic similarity of GO terms. Bioinformatics, 2007, 23(10):1274-1281. DOI:10.1093/bioinformatics/btm087. [37] Wang B, Mezlini A, Demir F et al. Similarity network fusion for aggregating data types on a genomic scale. Nature Methods, 2014, 11(3):333-337. DOI:10.1038/nmeth.2810. [38] Altman N S. An introduction to kernel and nearestneighbor nonparametric regression. The American Statistician, 1992, 46(3):175-185. DOI:10.1080/00031305.1992.10475879. [39] He S, He H, Xu W. ICM:A web server for integrated clustering of multi-dimensional biomedical data. Nucleic Acids Research, 2016, 44(W1):W154-W159. DOI:10.1093/nar/gkw378. [40] Hoadley K A, Yau C, Wolf D M et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 2014, 158(4):929-944. DOI:10.1016/j.cell.2014.06.049. [41] Ma T, Zhang A. Affinity network fusion and semisupervised learning for cancer patient clustering. Methods, 2018, 145:16-24. DOI:10.1016/j.ymeth.2018.05.020. [42] Tipping M E, Bishop C M. Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B, 1999, 21(3):611-622. DOI:10.1111/1467-9868.00196. [43] Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn:Machine learning in Python. Journal of Machine learning Research, 2011, 12:2825-2830. [44] Moore A R, Rosenberg S C, McCormick F et al. RAStargeted therapies:Is the undruggable drugged? Nature Reviews Drug Discovery, 2020, 19(8):533-552. DOI:10.1038/s41573-020-0068-6. [45] Wishart D S, Feunang Y D, Guo A C et al. DrugBank 5.0:A major update to the DrugBank database for 2018. Nucleic Acids Research, 2018, 46(D1):D1074-D1082. DOI:10.1093/nar/gkx1037. [46] Costa-Cabral S, Brough R, Konde A et al. CDK1 is a synthetic lethal target for KRAS mutant tumours. PLoS ONE, 2016, 11(2):Article No. e0149099. DOI:10.1371/journal.pone.0149099. [47] Grem J L, Voeller D M, Geoffroy F et al. Determinants of trimetrexate lethality in human colon cancer cells. British Journal of Cancer, 1994, 70(6):1075-1084. DOI:10.1038/bjc.1994.451. [48] Raimondi M V, Randazzo O, La Franca M et al. DHFR inhibitors:Reading the past for discovering novel anticancer agents. Molecules, 2019, 24(6):Article No. 1140. DOI:10.3390/molecules24061140. [49] Gesto D S, Cerqueira N M, Fernandes P A et al. Gemcitabine:A critical nucleoside for cancer therapy. Current Medicinal Chemistry, 2012, 19(7):1076-1087. DOI:10.2174/092986712799320682. [50] Shimasaki T, Ishigaki Y, Nakamura Y et al. Glycogen synthase kinase 3β inhibition sensitizes pancreatic cancer cells to gemcitabine. Journal of Gastroenterology, 2012, 47(3):321-333. DOI:10.1007/s00535-011-0484-9. [51] Kunnumakkara A B, Sung B, Ravindran J et al. Zyflamend suppresses growth and sensitizes human pancreatic tumors to gemcitabine in an orthotopic mouse model through modulation of multiple targets. International Journal of Cancer, 2012, 131(3):E292-E303. DOI:10.1002/ijc.26442. [52] Xia G, Wang H, Song Z et al. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2(RRM2). Journal of Experimental & Clinical Cancer Research, 2017, 36(1):Article No. 107. DOI:10.1186/s13046-017-0579-0. [53] Yoshida K, Toden S, Ravindranathan P et al. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis, 2017, 38(10):1036-1046. DOI:10.1093/carcin/bgx065. [54] Ashworth A, Lord C J, Reis-Filho J S. Genetic interactions in cancer progression and treatment. Cell., 2011, 145(1):30-38. DOI:10.1016/j.cell.2011.03.020. [55] Brough R, Frankum J R, Costa-Cabral S et al. Searching for synthetic lethality in cancer. Current Opinion in Genetics and Development, 2011, 21(1):34-41. DOI:10.1016/j.gde.2010.10.009. |
No related articles found! |
|
|