|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (5): 1145-1154.doi: 10.1007/s11390-021-0898-7
Special Issue: Computer Architecture and Systems
• Special Section of 2020 CCF Integrated Circuit Design and Automation Conference • Previous Articles Next Articles
Hui-Ming Tian, Student Member, CCF, and Zhu-Fei Chu*, Member, CCF, IEEE
[1] Chu Z, Soeken M, Xia Y et al. Advanced functional decom position using majority and its applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2020, 39(8):1621-1634. DOI:10.1109/TCAD.2019.2925392. [2] Mishchenko A, Chatterjee S, Brayton R. DAG-aware AIG rewriting:A fresh look at combinational logic synthesis. In Proc. the 43rd ACM/IEEE Design Automation Conference, Jul. 2006, pp.532-535. DOI:10.1145/1146909.1147048. [3] Testa E, Soeken M, Amarú L G, De Micheli G. Logic synthesis for established and emerging computing. Proceedings of the IEEE, 2018, 107(1):165-184. DOI:10.1109/JPROC.2018.2869760. [4] Lent C S, Tougaw P D, Porod W, Bernstein G H. Quantum cellular automata. Nanotechnology, 1993, 4(1):Article No. 49. DOI:10.1088/0957-4484/4/1/004. [5] Nikonov D E, Bourianoff G I, Ghani T. Proposal of a spin torque majority gate logic. IEEE Electron Device Letters, 2011, 32(8):1128-1130. DOI:10.1109/LED.2011.2156379. [6] Mohaghegh S M, Reza S N, Mohammadi M. Innovative model for ternary QCA gates. IET Circuits, Devices & Systems, 2017, 12(2):189-195. DOI:10.1049/ietcds.2017.0276. [7] Amarù L, Gaillardon P E, De Micheli G. Majorityinverter graph:A novel data-structure and algorithms for efficient logic optimization. In Proc. the 1st ACM/IEEE Design Automation Conference, Jun. 2014. DOI:10.1145/2593069.2593158. [8] Amarù L, Gaillardon P E, De Micheli G. Majority-inverter graph:A new paradigm for logic optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2016, 35(5):806-819. DOI:10.1109/TCAD.2015.2488484. [9] Haaswijk W, Soeken M, Amarù L et al. A novel basis for logic rewriting. In Proc. the 22nd Asia and South Pacific Design Automation Conference, Jan. 2017, pp.151-156. DOI:10.1109/ASPDAC.2017.7858312. [10] Testa E, Soeken M, Zografos O et al. Inversion optimization in majority-inverter graphs. In Proc. the 2016 IEEE/ACM Int. Symp. Nanoscale Architectures, Jul. 2016, pp.15-20. DOI:10.1145/2950067.2950072. [11] Shi L, Chu Z. Inversions optimization in XOR-majority graphs with an application to QCA. In Proc. the 2019 China Semiconductor Technology International Conference, Mar. 2019. DOI:10.1109/CSTIC.2019.8755713. [12] Chu Z, Shi L, Wang L, Xia Y. Multi-objective algebraic rewriting in XOR-majority graphs. Integration, 2019, 69:40-49. DOI:10.1016/j.vlsi.2019.08.005. [13] Momenzadeh M, Huang J, Tahoori M B, Lombardi F. Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2005, 24(12):1881-1893. DOI:10.1109/TCAD.2005.852667. [14] Sen B, Sikdar B K. A study on defect tolerance of tiles implementing universal gate functions. In Proc. the 2007 International Conference on Design & Technology of Integrated Systems in Nanoscale Era, Sept. 2007, pp.13-18. DOI:10.1109/DTIS.2007.4449484. [15] Zhang R, Gupta P, Jha N K. Majority and minority network synthesis with application to QCA-, SET-, and TPL-Based nanotechnologies. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2007, 26(7):1233-1245. DOI:10.1109/TCAD.2006.888267. [16] Kong K, Shang Y, Lu R. An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 2010, 9(2):170-183. DOI:10.1109/TNANO.2009.2028609. [17] Wang P, Niamat M Y, Vemuru S R, Alam M, Killian T. Synthesis of majority/minority logic networks. IEEE Trans. Nanotechnol., 2015, 14(3):473-483. DOI:10.1109/TNANO.2015.2408330. [18] Soeken M, Amarù L, Gaillardon P et al. Exact synthesis of majority-inverter graphs and its applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2017, 36(11):1842-1855. DOI:10.1109/TCAD.2017.2664059. [19] Neutzling A, Marranghello F S, Matos J M, Reis A, Ribas R P. maj-n logic synthesis for emerging technology. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2020, 39(3):747-751. DOI:10.1109/TCAD.2019.2897704. [20] Vacca M, Vighetti D, Mascarino M, Amarù L G, Graziano M, Zamboni M. Magnetic QCA majority voter feasibility analysis. In Proc. the 7th Conference on Ph.D. Research in Microelectronics and Electronics, Jul. 2011, pp.229-232. DOI:10.1109/PRIME.2011.5966275. [21] Testa E, Zografos O, Soeken M et al. Inverter propagation and fan-out constraints for beyond-CMOS majority-based technologies. In Proc. the 2017 IEEE Computer Society Annual Symposium on VLSI, Feb. 2017, pp.164-169. DOI:10.1109/ISVLSI.2017.37. [22] Amarù L G, Gaillardon P E, De Micheli G. The EPFL combinational benchmark suite. In Proc. the 24th International Workshop on Logic & Synthesis, Jun. 2015. [23] Walus K, Dysart T J, Jullien G A, Budiman R A. QCADesigner:A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 2004, 3(1):26-31. DOI:10.1109/TNANO.2003.820815. |
No related articles found! |
|