|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (5): 1118-1132.doi: 10.1007/s11390-021-0904-0
Special Issue: Computer Architecture and Systems
• Special Section of 2020 CCF Integrated Circuit Design and Automation Conference • Previous Articles Next Articles
Xiao-Jing Zha, Yin-Shui Xia*, Shang-Luan Xie, and Zhu-Fei Chu*, Member, CCF, IEEE
[1] Goldstein S C, Budiu M. Nanofabrics:Spatial computing using molecular electronics. SIGARCH Comput. Archit. News, 2001, 29(2):178-191. DOI:10.1145/384285.379262. [2] DeHon A. Nanowire-based programmable architectures. J. Emerg. Technol. Comput. Syst., 2005, 1(2):109-162. DOI:10.1145/1084748.1084750. [3] Lu W, Lieber C M. Nanoelectronics from the bottom up. Nature Materials, 2007, 6(11):841-850. DOI:10.1038/nmat2028. [4] Strukov D B, Likharev K K. CMOL FPGA:A reconfigurable architecture for hybrid digital circuits with twoterminal nanodevices. Nanotechnology, 2005, 16(6):888-900. DOI:10.1088/0957-4484/16/6/045. [5] Likharev K K. Hybrid CMOS/nanoelectronic circuits:Opportunities and challenges. J. Nanoelectron. Optoelectron., 2008, 3(3):203-230. DOI:10.1166/jno.2008.301. [6] Madhavan A, Sherwood T, Strukov D B. High-throughput pattern matching with CMOL FPGA circuits:Case for logic-in-memory computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 26(12):2759-2772. DOI:10.1109/TVLSI.2018.2809644. [7] Sait S M, Oughali F C, Arafeh A M. Engineering a memetic algorithm from discrete cuckoo search and tabu search for cell assignment of hybrid nanoscale CMOL circuits. J. Circuits Syst. Comput., 2016, 25(04):Article No. 1650023. DOI:10.1142/S0218126616500237. [8] Xia Y, Chu Z, Hung W N N, Wang L, Song X. An integrated optimization approach for nanohybrid circuit cell mapping. IEEE Trans. Nanotechnol., 2011, 10(6):1275-1284. DOI:10.1109/TNANO.2011.2131153. [9] Tunali O, Altun M. A survey of fault-tolerance algorithms for reconfigurable nano-crossbar arrays. ACM Comput. Surv., 2018, 50(6):Article No. 79. DOI:10.1145/3125641. [10] Ariga K, Lee M V, Mori T, Yu X, Hill J P. Twodimensional nanoarchitectonics based on self-assembly. Adv. Colloid Interface Sci., 2010, 154(1/2):20-29. DOI:10.1016/j.cis.2010.01.005. [11] Yan H, Choe H S, Nam S, Hu Y, Das S, Klemic J F, Ellenbogen J C, Lieber C M. Programmable nanowire circuits for nanoprocessors. Nature, 2011, 470(7333):240-244. DOI:10.1038/nature09749. [12] Yuan B, Li B. A fast extraction algorithm for defect-free subcrossbar in nanoelectronic crossbar. ACM J. Emerg. Technologies Comput. Syst., 2014, 10(3):Article No. 25. DOI:10.1145/2517137. [13] Sasikumar D, Kumar A. A novel defect tolerance scheme for nanocrossbar architectures with enhanced efficiency. Micromachines, 2018, 10(1):Article No. 14. DOI:10.3390/mi10010014. [14] Yuan B, Li B, Chen H H. Defect-and variation-tolerant logic mapping in nanocrossbar using bipartite matching and memetic algorithm. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24(9):2813-2826. DOI:10.1109/TVLSI.2016.2530898. [15] Hung W N N, Gao C, Song X, Hammerstrom D. Defect-tolerant CMOL cell assignment via satisfiability. IEEE Sens. J., 2008, 8(6):823-830. DOI:10.1109/JSEN.2008.923261. [16] Sait S M, Arafeh A M. Reconfiguration-based defecttolerant design automation for hybrid CMOS/nanofabrics circuits using evolutionary and non-deterministic heuristics. Arab. J. Sci. Eng., 2015, 40(9):2515-2529. DOI:10.1007/s13369-015-1682-1. [17] Chen D, Xia Y, Wang Z. Stuck-at-close defect propagation and its blocking technique in CMOL cell mapping. Microelectron. J., 2018, 72:100-108. DOI:10.1016/j.mejo.2017.12.004. [18] Morgul M C, Tunali O, Altun M, Frontini L, Ciriani V, Vatajelu E I, Anghel L, Moritz C A, Stan M R, Alexandrescu D. Integrated synthesis methodology for crossbar arrays. In Proc. the 14th IEEE/ACM Int. Symp. Nanoscale Architectures, Jul. 2018, pp.91-97. DOI:10.1145/3232195.3232211. [19] Xu Q, Chen S, Geng H, Yuan B, Yu B, Wu F, Huang Z. Fault tolerance in memristive crossbar-based neuromorphic computing systems. Integr. VLSI J., 2020, 70:70-79. DOI:10.1016/j.vlsi.2019.09.008. [20] Kule M, Rahaman H, Bhattacharya B B. Maximal defectfree component in nanoscale crossbar circuits amidst stuck-open and stuck-closed faults. J. Circuits Syst. Comput., 2019, 28(11):Article No. 1950180. DOI:10.1142/S0218126619501809. [21] Chu Z, Xia Y, Hung W N N, Song X, Wang L. Timing-driven logic restructuring for nano-hybrid circuits. Int. J. Electron., 2013, 100(5):669-685. DOI:10.1080/00207217.2012.720945. [22] Zha X, Xia Y. Defect-tolerant mapping of CMOL circuits with delay optimization. In Proc. the 30th ACM Great Lakes Symp. VLSI, Sept. 2020, pp.451-456. DOI:10.1145/3386263.3406944. [23] Cong J, Xiao B. Defect tolerance in nanodevice-based programmable interconnects:Utilization beyond avoidance. In Proc. the 50th ACM/EDAC/IEEE Des. Autom. Conf., May 29-June 7, 2013, Article No. 9. DOI:10.1145/2463209.2488745. [24] Sait S M, Arafeh A M. Cell assignment in hybrid CMOS/nanodevices architecture using tabu search. Appl. Intell., 2014, 40(1):1-12. DOI:10.1007/s10489-013-0441-9. [25] Matrosova A, Ostanin S, Chernyshov S. Finding false paths for sequential circuits using operations on ROBDDs. In Proc. the 24th IEEE Int. Symp. On-Line Testing and Robust System Design, July 2018, pp.240-242. DOI:10.1109/IOLTS.2018.8474213. [26] Brglez F, Bryan D, Kozminski K. Combinational profiles of sequential benchmark circuits. In Proc. IEEE Int. Symp. Circuits and Systems, May 1989, pp.1929-1934. DOI:10.1109/ISCAS.1989.100747. |
[1] | Ji-Zan Zhang, Zhi-Min Gu, Member, CCF, Ming-Quan Zhang, Member, CCF. Reducing the Upper Bound Delay by Optimizing Bank-to-Core Mapping [J]. , 2016, 31(6): 1179-1193. |
[2] | Zhu-Fei Chu (储著飞), Student Member, IEEE, Yin-Shui Xia (夏银水), and Lun-Yao Wang (王伦耀). Cell Mapping for Nanohybrid Circuit Architecture Using Genetic Algorithm [J]. , 2012, 27(1): 113-120. |
|
|