|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (5): 1155-1166.doi: 10.1007/s11390-021-0906-y
Special Issue: Computer Architecture and Systems
• Special Section of 2020 CCF Integrated Circuit Design and Automation Conference • Previous Articles Next Articles
Feng Wang1, Guo-Jie Luo1,*, Member, CCF, ACM, IEEE, Guang-Yu Sun1, Member, CCF, ACM, IEEE Yu-Hao Wang2, Di-Min Niu2, and Hong-Zhong Zheng2
[1] Hinton G, Deng L, Yu D et al. Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups. IEEE Signal Process Mag., 2012, 29(6):82-97. DOI:10.1109/MSP.2012.2205597. [2] Akinaga H, Shima H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE, 2010, 98(12):2237-2251. DOI:10.1109/JPROC.2010.2070830. [3] Chi P, Li S, Xu C et al. PRIME:A novel processing-inmemory architecture for neural network computation in ReRAM-based main memory. In Proc. the 43rd International Symposium on Computer Architecture, Jun. 2016, pp.27-39. DOI:10.1109/ISCA.2016.13. [4] Chen L, Li J, Chen Y et al. Accelerator-friendly neuralnetwork training:Learning variations and defects in RRAM crossbar. In Proc. the Design, Automation & Test in Europe Conference & Exhibition, Mar. 2017, pp.19-24. DOI:10.23919/DATE.2017.7926952. [5] Liu C, Yan B, Yang C et al. A spiking neuromorphic design with resistive crossbar. In Proc. the 52nd Design Automation Conference, Jun. 2015. DOI:10.1145/2744769.2744783. [6] Rastegari M, Ordonez V, Redmon J, Farhadi A. XNORNet:ImageNet classification using binary convolutional neural networks. In Proc. the 14th European Conference on Computer Vision, Oct. 2016, pp.525-542. DOI:10.1007/978-3-319-46493-032. [7] Alemdar H, Leroy V, Prost-Boucle A, Pétrot F. Ternary neural networks for resource-efficient AI applications. In Proc. the International Joint Conference on Neural Networks, May 2017, pp.2547-2554. DOI:10.1109/IJCNN.2017.7966166. [8] Tang T, Xia L, Li B, Wang Y, Yang H. Binary convolutional neural network on RRAM. In Proc. the 22nd Asia and South Pacific Design Automation Conference, Jan. 2017, pp.782-787. DOI:10.1109/ASPDAC.2017.7858419. [9] Ni L, Liu Z, Song W et al. An energy-efficient and highthroughput bitwise CNN on sneak-path-free digital ReRAM crossbar. In Proc. the 2017 IEEE/ACM International Symposium on Low Power Electronics and Design, Jul. 2017. DOI:10.1109/ISLPED.2017.8009177. [10] Sun X, Yin S, Peng X, Liu R, Seo J, Yu S. XNOR-RRAM:A scalable and parallel resistive synaptic architecture for binary neural networks. In Proc. the Design, Automation & Test in Europe Conference & Exhibition, Mar. 2018, pp.1423-1428. DOI:10.23919/DATE.2018.8342235. [11] Sun X, Peng X, Chen P Y, Liu R, Seo J, Yu S. Fully parallel RRAM synaptic array for implementing binary neural network with (+1, -1) weights and (+1, 0) neurons. In Proc. the 23rd Asia and South Pacific Design Automation Conference, Jan. 2018, pp.574-579. DOI:10.1109/ASPDAC.2018.8297384. [12] Wang P, Ji Y, Hong C, Lyu Y, Wang D, Xie Y. SNrram:An efficient sparse neural network computation architecture based on resistive random-access memory. In Proc. the 55th ACM/ESDA/IEEE Design Automation Conference, Jun. 2018. DOI:10.1109/DAC.2018.8465793. [13] Chi C C, Jiang J H R. Logic synthesis of binarized neural networks for efficient circuit implementation. IEEE Trans. Comput. Des. Integr. Circuits Syst.. DOI:10.1109/TCAD.2021.3078606. [14] Garey M R, Johnson D S, Stockmeyer L. Some simplified NP-complete problems. In Proc. the 6th ACM Symposium on Theory of Computing, Apr. 30-May 2, 1974, pp.47-63. DOI:10.1145/800119.803884. [15] Kazemi A, Alessandri C, Seabaugh A C, Sharon H X, Niemier M, Joshi S. A device non-ideality resilient approach for mapping neural networks to crossbar arrays. In Proc. the 57th ACM/IEEE Design Automation Conference, Jul. 2020. DOI:10.1109/DAC18072.2020.9218544. [16] Song L, Qian X, Li H, Chen Y. PipeLayer:A pipelined ReRAM-based accelerator for deep learning. In Proc. the International Symposium on High Performance Computer Architecture, Feb. 2017, pp.541-552. DOI:10.1109/HPCA.2017.55. [17] Shafiee A, Nag A, Muralimanohar N et al. ISAAC:A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Comput. Archit. News, 2016, 44(3):14-26. DOI:10.1145/3007787.3001139. [18] Zhu Z, Sun H, Lin Y et al. A configurable multi-precision CNN computing framework based on single bit RRAM. In Proc. the 56th ACM/IEEE Design Automation Conference, Jun. 2019, Article No. 56. DOI:10.1145/3316781.3317739. [19] Peng X, Liu R, Yu S. Optimizing weight mapping and dataflow for convolutional neural networks on processing-in-memory architectures. IEEE Trans. Circuits Syst. I Regul. Pap., 2020, 67(4):1333-1343. DOI:10.1109/TCSI.2019.2958568. [20] Cheng M, Xia L, Zhu Z et al. TIME:A training-in-memory architecture for RRAM-based deep neural networks. IEEE Trans. Comput. Des. Integr. Circuits Syst., 2019, 38(5):834-847. DOI:10.1109/TCAD.2018.2824304. [21] Zhu Z, Lin J, Cheng M et al. Mixed size crossbar based RRAM CNN accelerator with overlapped mapping method. In Proc. the International Conference on Computer-Aided Design, Nov. 2018, Article No. 69. DOI:10.1145/3240765.3240825. |
[1] | Que-Ping Kong, Zi-Yan Wang, Yuan Huang, Xiang-Ping Chen, Xiao-Cong Zhou, Zi-Bin Zheng, and Gang Huang. Characterizing and Detecting Gas-Inefficient Patterns in Smart Contracts [J]. Journal of Computer Science and Technology, 2022, 37(1): 67-82. |
[2] | Zeynep Banu Ozger, Nurgul Yuzbasioglu Uslu. An Effective Discrete Artificial Bee Colony Based SPARQL Query Path Optimization by Reordering Triples [J]. Journal of Computer Science and Technology, 2021, 36(2): 445-462. |
[3] | Xin Li, Patrick Gardy, Yu-Xin Deng, Hiroyuki Seki. Reachability of Patterned Conditional Pushdown Systems [J]. Journal of Computer Science and Technology, 2020, 35(6): 1295-1311. |
[4] | Dong Liu, Zhi-Lei Ren, Zhong-Tian Long, Guo-Jun Gao, He Jiang. Mining Design Pattern Use Scenarios and Related Design Pattern Pairs: A Case Study on Online Posts [J]. Journal of Computer Science and Technology, 2020, 35(5): 963-978. |
[5] | Monidipa Das, Soumya K. Ghosh. Data-Driven Approaches for Spatio-Temporal Analysis: A Survey of the State-of-the-Arts [J]. Journal of Computer Science and Technology, 2020, 35(3): 665-696. |
[6] | Wen-Yan Chen, Ke-Jiang Ye, Cheng-Zhi Lu, Dong-Dai Zhou, Cheng-Zhong Xu. Interference Analysis of Co-Located Container Workloads: A Perspective from Hardware Performance Counters [J]. Journal of Computer Science and Technology, 2020, 35(2): 412-417. |
[7] | Jiu-Ru Gao, Wei Chen, Jia-Jie Xu, An Liu, Zhi-Xu Li, Hongzhi Yin, Lei Zhao. An Efficient Framework for Multiple Subgraph Pattern Matching Models [J]. Journal of Computer Science and Technology, 2019, 34(6): 1185-1202. |
[8] | Zhe Liu, Cheng-Jian Qiu, Yu-Qing Song, Xiao-Hong Liu, Juan Wang, Victor S. Sheng. Texture Feature Extraction from Thyroid MR Imaging Using High-Order Derived Mean CLBP [J]. Journal of Computer Science and Technology, 2019, 34(1): 35-46. |
[9] | Aakash Ahmad, Claus Pahl, Ahmed B. Altamimi, Abdulrahman Alreshidi. Mining Patterns from Change Logs to Support Reuse-Driven Evolution of Software Architectures [J]. Journal of Computer Science and Technology, 2018, 33(6): 1278-1306. |
[10] | Xin Xu, Jiaheng Lu, Wei Wang. Hierarchical Clustering of Complex Symbolic Data and Application for Emitter Identification [J]. , 2018, 33(4): 807-822. |
[11] | Lei Guo, Yu-Fei Wen, Xin-Hua Wang. Exploiting Pre-Trained Network Embeddings for Recommendations in Social Networks [J]. , 2018, 33(4): 682-696. |
[12] | Guo-Wei Wang, Jin-Dou Zhang, Jing Li. Complete Your Mobility: Linking Trajectories Across Heterogeneous Mobility Data Sources [J]. , 2018, 33(4): 792-806. |
[13] | Guochen Cai, Kyungmi Lee, Ickjai Lee. Mining Semantic Trajectory Patterns from Geo-Tagged Data [J]. , 2018, 33(4): 849-862. |
[14] | Shi-Ming Guo, Hong Gao. HUITWU: An Efficient Algorithm for High-Utility Itemset Mining in Transaction Databases [J]. , 2016, 31(4): 776-786. |
[15] | Hoon Park, Anping He, Marly Roncken, Xiaoyu Song, Ivan Sutherland. Modular Timing Constraints for Delay-Insensitive Systems [J]. , 2016, 31(1): 77-106. |
|